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Copyright Notice

Copyright c© 2009 S.R. Doty.

This package is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. For details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html .

This software is distributed as is without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.



1 Weyl modules

This chapter discusses the commands available for computations with Weyl modules for a given semisimple
simply-connected algebraic group G in positive characteristic p. Actually the group G itself never appears
in any of the computations, which take place instead using the algebra of distributions (also known as
the hyperalgebra) of G , taken over the prime field. One should refer to [Jan03] for the definition of the
algebra of distributions, and other basic definitions and properties related to Weyl modules.

The algorithms are based on the method of [Irv86] (see also [Xi99]) and build on the existing Lie algebra
functionality in GAP. In principle, one can work with arbitrary weights for an arbitrary (simple) root system;
in practice, the functionality is limited by the size of the objects being computed. If your Weyl module has
dimension in the thousands, you may have to wait a very long time for certain computations to finish.

The package is possibly most useful for doing computations in characteristic p where p is smaller than the
Coxeter number. For such small primes, the general theory offers very little information.

Warning. At the core of many of the computations is a routine which produces a basis for the space of
maximal vectors of a specified dominant weight in a Weyl module. Usually, that space has dimension at
most 1. Cases for which there exist two or more independent maximal vectors of the same weight could
possibly cause problems, so the code will emit an warning message if this occurs (and then try to continue).
Such situations are relatively rare (and interesting); the smallest example known to the author occurs in
Type D4 in the Weyl module of highest weight [0,1,0,0], as pointed out in [CPS75], page 173. (I am grateful
to Anton Cox for this reference.) See the examples in Section 1.6 to see the explicit form of the warning
message.

1.1 Creating Weyl modules

There are two functions for creating a Weyl module.

1 I WeylModule( p, weight, type, rank ) F
I WeylModule( V , weight ) F

The function WeylModule with four arguments creates a Weyl module over a field of characteristic p, of
highest weight weight , for the root system of Type type and rank rank . In the second form, with two
arguments, V is an existing Weyl module and the new Weyl module has the same characteristic and root
system as the existing one.

gap> V:= WeylModule(3, [3,4], "A", 2);
<Type A2 Weyl module of highest weight [ 3, 4 ] at prime p = 3>
gap> W:= WeylModule(V, [3,0]);
<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

There is also a category of Weyl modules.

2 I IsWeylModule( V ) C

returns true iff V belongs to the category.

gap> IsWeylModule(W);
true
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1.2 Creating quotients of Weyl modules

Quotients of Weyl modules are also supported. They are created by the command

1 I QuotientWeylModule( V , list ) F

where V is an existing Weyl module and list is a list of basis vectors spanning a submodule of V . Usually
one gets such a basis by running SubWeylModule (see Section 1.7 below).

gap> V:= WeylModule(2,[2,2],"B",2);
<Type B2 Weyl module of highest weight [ 2, 2 ] at prime p = 2>
gap> m:= MaximalVectors(V);
[ 1*v0, y1*v0, y2*v0, y1*y2*v0+y3*v0, y2*y3*v0, y1*y2*y3*v0, y1*y2*y3*y4*v0 ]
gap> sub:=SubWeylModule(V, m[7]);
[ y1*y2*y3*y4*v0 ]
gap> Q:= QuotientWeylModule(V, sub);
<Quotient of Type B2 Weyl module of highest weight [ 2, 2 ] at prime p = 2>

In the above example, we first created a Weyl module, then computed its maximal vectors. The last maximal
vector generates a one dimensional submodule (a copy of the trivial module) and we formed the corresponding
quotient Weyl module.

There is also a category of quotient Weyl modules.

2 I IsQuotientWeylModule( Q ) C

returns true iff Q belongs to the category.

gap> IsQuotientWeylModule(Q);
true

1.3 Basis, dimension, and other miscellaneous commands

Let V be a Weyl module, or a quotient Weyl module.

1 I TheLieAlgebra( V ) F
I BasisVecs( V ) F
I Dim( V ) F
I Generator( V ) F
I TheCharacteristic( V ) F

These commands return the underlying Lie algebra associated to V , a basis (of weight vectors) for V , the
dimension of V , the standard generator of V , and the characteristic of the underlying field, respectively.
In case V is a quotient Weyl module, BasisVecs returns a complete set of linearly independent coset
representatives for the quotient.

gap> V:= WeylModule(2, [1,0], "G", 2);
<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>
gap> TheLieAlgebra(V);
<Lie algebra of dimension 14 over Rationals>
gap> b:= BasisVecs(V);
[ 1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0 ]
gap> Dim(V);
7
gap> g:= Generator(V);
1*v0
gap> TheCharacteristic(V);
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2

2 I ActOn( V , u, v ) F

ActOn returns the result of acting by a hyperalgebra element u on a vector v . Here v must be an element of
V , where V is a Weyl module or a quotient Weyl module.

For example, with V as defined above in the preceding example, we have

gap> L:= TheLieAlgebra(V);
<Lie algebra of dimension 14 over Rationals>
gap> b:= BasisVecs(V);
[ 1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0 ]
gap> g:= LatticeGeneratorsInUEA(L);
[ y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, ( h13/1 ), ( h14/1 ) ]
gap> ActOn(V, g[1]^2 + g[7], b[1]);
0*v0
gap> ActOn(V, g[1]*g[6], b[1]);
y1*y6*v0

Note that the command LatticeGeneratorsInUEA is a pre-existing GAP command; see the chapter on Lie
algebras in the GAP reference manual for further details. For our purposes, these elements are regarded as
standard generators of the hyperalgebra.

1.4 Weight of a vector; weights of a list of vectors

One often wants to know the weight of a given vector in a Weyl module or a quotient Weyl module. Of
course, it has to be a weight vector. The command

1 I Weight( v ) F

returns the weight of the weight vector v .

Another common situation is that one has a list lst of weight vectors (maybe a basis or a list of maximal
vectors, or a basis of a submodule) and one wants to know the weight of each vector in the list. This is
obtained by the command

2 I List( lst, Weight ) F

which maps the Weight function onto each element of the list lst in turn, making a list of the results.

gap> V:= WeylModule(2, [2,0], "A", 2);
<Type A2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>
gap> b:= BasisVecs(V);
[ 1*v0, y1*v0, y3*v0, y1^(2)*v0, y1*y3*v0, y3^(2)*v0 ]
gap> List(b, Weight);
[ [ 2, 0 ], [ 0, 1 ], [ 1, -1 ], [ -2, 2 ], [ -1, 0 ], [ 0, -2 ] ]
gap> Weight( b[2] );
[ 0, 1 ]
gap> m:= MaximalVectors(V);
[ 1*v0, y1*v0 ]
gap> List(m, Weight);
[ [ 2, 0 ], [ 0, 1 ] ]
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1.5 Structure of Weyl modules

One of the most useful commands is

1 I SubmoduleStructure( V ) F

which returns a complete list of primitive vectors in a Weyl module V , and along the way prints out an
analysis of the submodule lattice structure of V . WARNING: If the dimension of V is large this can take a
very long time.

gap> V:= WeylModule(3, [3,3], "A", 2);
<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>
gap> v:= SubmoduleStructure(V);
Level 1
-maximal vector v1 = y1*y2*y3*v0+y1^(2)*y2^(2)*v0 of weight [ 1, 1 ]
Level 2
-maximal vector v2 = y1^(2)*y2*v0 of weight [ 0, 3 ]
-maximal vector v3 = -1*y1*y2^(2)*v0+y2*y3*v0 of weight [ 3, 0 ]
-primitive vector v4 = y1*y2*y3^(2)*v0 of weight [ 0, 0 ]
Level 3
-maximal vector v5 = y1*v0 of weight [ 1, 4 ]
-maximal vector v6 = y2*v0 of weight [ 4, 1 ]
Level 4
-primitive vector v7 = y1^(3)*y2^(3)*v0+y3^(3)*v0 of weight [ 0, 0 ]
Level 5
-maximal vector v8 = 1*v0 of weight [ 3, 3 ]
The submodule <v1> contains v1
The submodule <v2> contains v1 v2
The submodule <v3> contains v1 v3
The submodule <v4> contains v1 v4
The submodule <v5> contains v1 v2 v3 v4 v5
The submodule <v6> contains v1 v2 v3 v4 v6
The submodule <v7> contains v1 v2 v3 v4 v5 v6 v7
The submodule <v8> contains v1 v2 v3 v4 v5 v6 v7 v8
[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,
y1*y2*y3^(2)*v0, y1*v0, y2*v0, y1^(3)*y2^(3)*v0+y3^(3)*v0, 1*v0 ]

This shows that V has eight primitive vectors, six of which are maximal. The submodule generated by each
primitive vector is shown. The levels are the subquotient layers of the socle series of V , so this Weyl module
has a simple socle of highest weight [1,1], there are two simple composition factors of highest weight [0,3] and
[3,0] extending the socle, and so on. This example is treated in [DM08], where one can also find a diagram
depicting the structure.

2 I SocleWeyl( V ) F
I SocleNQ( V ) F

SocleWeyl returns a list of maximal vectors of the Weyl module V generating the socle of V . SocleNQ does
the same, but does not use quotient modules (“NQ” stands for “no quotients”). Currently the latter form
often executes faster.

For example, with V as above, we have:
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gap> SocleWeyl(V);
[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]
gap> SocleNQ(V);
[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

3 I ExtWeyl( V , list ) F
I ExtNQ( V , list ) F

ExtWeyl returns a list of the maximal vectors generating the socle of the quotient V /S where S is the
submodule of V generated by the vectors in the given list . ExtNQ performs the same function without using
quotients. Currently the latter form is often faster.

For example, with V as above, we have:

gap> soc:= SocleNQ(V);
[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]
gap> ExtWeyl(V, soc);
[ y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0, y1*y2*y3^(2)*v0 ]
gap> ExtNQ(V, soc);
[ y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0, y1*y2*y3^(2)*v0 ]

4 I MaximalSubmodule( V ) F

MaximalSubmodule returns a basis of weight vectors for the maximal submodule of a given Weyl module V .
The corresponding quotient is irreducible, of the same highest weight as V .

gap> V:= WeylModule(2, [4,0], "A", 2);
<Type A2 Weyl module of highest weight [ 4, 0 ] at prime p = 2>
gap> Dim(V);
15
gap> max:= MaximalSubmodule(V);
[ y1*v0, y3*v0, y1*y3*v0, y1^(3)*v0, y1*y3^(2)*v0, y1^(2)*y3*v0, y3^(3)*v0,
y1^(3)*y3*v0, y1*y3^(3)*v0, y1^(2)*v0, y3^(2)*v0, y1^(2)*y3^(2)*v0 ]

gap> Length(max);
12
gap> Q:= QuotientWeylModule(V, max);
<Quotient of Type A2 Weyl module of highest weight [ 4, 0 ] at prime p = 2>
gap> b:= BasisVecs(Q);
[ 1*v0, y1^(4)*v0, y3^(4)*v0 ]
gap> List(b, Weight);
[ [ 4, 0 ], [ -4, 4 ], [ 0, -4 ] ]

1.6 Maximal and primitive vectors; homomorphisms between Weyl modules

A maximal vector is by definition a non-zero vector killed by the action of the unipotent radical of the
positive Borel subgroup; see [Jan03] for further details. If V is a Weyl module, or a quotient Weyl module,
the commands

1 I MaximalVectors( V ) F
I MaximalVectors( V , weight ) F

respectively return a list of linearly independent vectors in V spanning the subspace of all maximal vectors
of V , or a list of linearly independent vectors spanning the subspace of maximal vectors of the given weight
space. (Note that linear combinations of maximal vectors are again maximal.)
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In case V is a Weyl module, each maximal vector of V corresponds to a nontrivial homomorphism from
the Weyl module of that highest weight into V . Hence the above commands can be used to determine the
space Hom(W , V ) for two given Weyl modules W , V .

gap> V:= WeylModule(2, [2,2,2], "A", 3);
<Type A3 Weyl module of highest weight [ 2, 2, 2 ] at prime p = 2>
gap> m:= MaximalVectors(V);
[ 1*v0, y1*v0, y2*v0, y3*v0, y1*y3*v0, y1*y2*y3*v0+y3*y4*v0+y6*v0,
y1*y2*y5*v0+y2*y3*y4*v0+y4*y5*v0, y1*y2*y4*v0, y2*y3*y5*v0,
y1*y2*y3*y4*v0+y1*y4*y5*v0, y1*y2*y3*y5*v0, y1*y2*y3*y4*y5*y6*v0 ]

gap> m:= MaximalVectors(V, [0,3,2]);
[ y1*v0 ]

Here are two examples where the space of maximal vectors for a specified weight has dimension strictly
greater than 1. As mentioned at the beginning of the chapter, such examples generate a warning message
(which is safe to ignore in the two cases given below).

gap> V:= WeylModule(2, [0,1,0,0], "D", 4);
<Type D4 Weyl module of highest weight [ 0, 1, 0, 0 ] at prime p = 2>
gap> m:= MaximalVectors(V);
********************************************************
** WARNING! Dimension > 1 detected
** in maximal vecs of weight [ 0, 0, 0, 0 ]
** in Weyl module of highest weight
** [ 0, 1, 0, 0 ]
********************************************************
[ 1*v0, y5*y10*v0+y6*y9*v0, y2*y11*v0+y5*y10*v0+y12*v0 ]
gap> List(m, Weight);
[ [ 0, 1, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ]
gap> V:= WeylModule(2, [0,1,0,0,0,0], "D", 6);
<Type D6 Weyl module of highest weight [ 0, 1, 0, 0, 0, 0 ] at prime p = 2>
gap> m:= MaximalVectors(V);
********************************************************
** WARNING! Dimension > 1 detected
** in maximal vecs of weight [ 0, 0, 0, 0, 0, 0 ]
** in Weyl module of highest weight
** [ 0, 1, 0, 0, 0, 0 ]
********************************************************
[ 1*v0, y7*y28*v0+y8*y27*v0+y13*y25*v0+y18*y22*v0, y2*y29*v0+y7*y28*v0+y30*v0
]

gap> List(m, Weight);
[ [ 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0 ] ]

Given a weight vector v in a Weyl module, or quotient Weyl module, one can test whether or not the vector
v is maximal. The two forms of this command are:

2 I IsMaximalVector( V , v ) F
I IsMaximalVector( V , lst, v ) F

and in the second form lst must be a basis of weight vectors for a submodule of V . The first form of the
command returns true iff v is maximal in V ; the second form returns true iff the image of v is maximal in
the quotient V /S where S is the submodule spanned by lst .
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If V is a Weyl module, a primitive vector in V is a vector whose image in some sub-quotient is maximal
(see [Xi99]). Maximal vectors are always primitive, by definition. Clearly, the (independent) primitive vectors
are in bijective correspondence with the composition factors of V .

If V is a Weyl module, the command

3 I PrimitiveVectors( V ) F

returns a list of the primitive vectors of V . This is the same list returned by SubmoduleStructure but it
should execute faster since it does not bother about computing structure. For example:

gap> V:= WeylModule(3, [3,3], "A", 2);
<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>
gap> p:= PrimitiveVectors(V);
[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,
y1*y2*y3^(2)*v0, y1*v0, y2*v0, y1^(3)*y2^(3)*v0+y3^(3)*v0, 1*v0 ]

WARNING: If the dimension of V is large, this command can take a very long time to execute.

1.7 Submodules

Given a vector v or a list lst of vectors, in a given Weyl module or quotient Weyl module, V , one obtains
a basis of weight vectors for the submodule of V generated by v or lst by the appropriate command listed
below.

1 I SubWeylModule( V , v ) F
I SubWeylModule( V , lst ) F

WARNING: This can take a very long time, if the dimension of V is large.

Here is an example, in which we find a submodule and compute the corresponding quotient of the Weyl
module:

gap> V:= WeylModule(2, [8,0], "A", 2);
<Type A2 Weyl module of highest weight [ 8, 0 ] at prime p = 2>
gap> m:= MaximalVectors(V);
[ 1*v0, y1*v0, y1^(3)*y3^(2)*v0 ]
gap> List(m, Weight);
[ [ 8, 0 ], [ 6, 1 ], [ 0, 1 ] ]
gap> s:= SubWeylModule(V, m[2]);
[ y1*v0, y3*v0, y1*y3*v0, y1^(3)*v0, y1*y3^(2)*v0, y1^(5)*v0, y1*y3^(4)*v0,
y1^(2)*y3*v0, y3^(3)*v0, y1^(4)*y3*v0, y3^(5)*v0, y1^(3)*y3*v0,
y1*y3^(3)*v0, y1^(5)*y3*v0, y1*y3^(5)*v0, y1^(3)*y3^(2)*v0, y1^(7)*v0,
y1^(3)*y3^(4)*v0, y1^(5)*y3^(2)*v0, y1*y3^(6)*v0, y1^(2)*y3^(3)*v0,
y1^(6)*y3*v0, y1^(2)*y3^(5)*v0, y1^(4)*y3^(3)*v0, y3^(7)*v0,
y1^(3)*y3^(3)*v0, y1^(7)*y3*v0, y1^(3)*y3^(5)*v0, y1^(5)*y3^(3)*v0,
y1*y3^(7)*v0 ]

gap> Q:= QuotientWeylModule(V, s);
<Quotient of Type A2 Weyl module of highest weight [ 8, 0 ] at prime p = 2>
gap> BasisVecs(Q);
[ 1*v0, y1^(2)*v0, y3^(2)*v0, y1^(4)*v0, y1^(2)*y3^(2)*v0, y1^(6)*v0,
y3^(4)*v0, y1^(4)*y3^(2)*v0, y1^(8)*v0, y1^(2)*y3^(4)*v0, y1^(6)*y3^(2)*v0,
y3^(6)*v0, y1^(4)*y3^(4)*v0, y1^(2)*y3^(6)*v0, y3^(8)*v0 ]

gap> Dim(Q);
15

One can also construct sub-quotients (continuing the preceding computation):
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gap> mm:= MaximalVectors(Q);
[ 1*v0, y1^(2)*v0 ]
gap> subq:= SubWeylModule(Q, mm[2]);
[ y1^(2)*v0, y3^(2)*v0, y1^(2)*y3^(2)*v0, y1^(6)*v0, y1^(2)*y3^(4)*v0,
y1^(4)*y3^(2)*v0, y3^(6)*v0, y1^(6)*y3^(2)*v0, y1^(2)*y3^(6)*v0 ]

gap> List(subq, Weight);
[ [ 4, 2 ], [ 6, -2 ], [ 2, 0 ], [ -4, 6 ], [ 0, -2 ], [ -2, 2 ], [ 2, -6 ],
[ -6, 4 ], [ -2, -4 ] ]

Here, we have constructed a basis of weight vectors for the simple socle of the quotient Q.

Given a Weyl module, or a quotient Weyl module, V , a list lst of weight vectors forming a basis for a
submodule, and a vector v , the command

2 I IsWithin( V , lst, v )

returns true iff the given vector v lies within the submodule given by the basis lst .

1.8 Weights and weight spaces

If V is a Weyl module, or a quotient Weyl module, the following commands are available.

1 I Weights( V ) F
I DominantWeights( V ) F
I WeightSpaces( V ) F
I DominantWeightSpaces( V ) F
I WeightSpace( V , weight ) F

Weights returns a list of the weights of V , without multiplicities; DominantWeights returns a list of the
dominant weights of V , again without multiplicities.

WeightSpaces returns a list consisting of each weight followed by a basis of the corresponding weight space;
DominantWeightSpaces returns just the sublist containing the dominant weights and the corresponding
weight spaces.

Finally, WeightSpace returns a basis of the particular weight space given by the specified weight .

gap> V:= WeylModule(2, [1,0,0], "A", 3);
<Type A3 Weyl module of highest weight [ 1, 0, 0 ] at prime p = 2>
gap> Weights(V);
[ [ 1, 0, 0 ], [ -1, 1, 0 ], [ 0, -1, 1 ], [ 0, 0, -1 ] ]
gap> DominantWeights(V);
[ [ 1, 0, 0 ] ]
gap> WeightSpaces(V);
[ [ 1, 0, 0 ], [ 1*v0 ], [ -1, 1, 0 ], [ y1*v0 ], [ 0, -1, 1 ], [ y4*v0 ],
[ 0, 0, -1 ], [ y6*v0 ] ]

gap> DominantWeightSpaces(V);
[ [ 1, 0, 0 ], [ 1*v0 ] ]
gap> WeightSpace(V, [-1,1,0]);
[ y1*v0 ]
gap> WeightSpace(V, [0,1,0]);
fail

The last command prints fail because there are no weight vectors of weight [0,1,0] in the indicated Weyl
module.



2
Characters and

decomposition numbers

(Formal) characters can be computed for Weyl modules and simple modules. In the latter case, this is done
recursively using Steinberg’s tensor product theorem; the characters of the simples of restricted highest
weight are obtained by first computing the maximal submodule and then forming the corresponding quotient.

2.1 Characters

Given a Weyl module or quotient Weyl module V , the command:

1 I Character( V ) F

returns the (formal) character of V , as a list of weights and multiplicities (the multiplicity of each weight
follows the weight in the list). For example,

gap> V:= WeylModule(3, [3,0], "A", 2);
<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>
gap> Character(V);
[ [ 3, 0 ], 1, [ 1, 1 ], 1, [ 2, -1 ], 1, [ -1, 2 ], 1, [ 0, 0 ], 1,
[ -3, 3 ], 1, [ 1, -2 ], 1, [ -2, 1 ], 1, [ -1, -1 ], 1, [ 0, -3 ], 1 ]

gap> S:= MaximalSubmodule(V);
[ y1*v0, 2*y1^(2)*v0, 2*y3*v0, y1*y3*v0, 2*y1^(2)*y3*v0, y3^(2)*v0,
2*y1*y3^(2)*v0 ]

gap> Character( QuotientWeylModule(V, S) );
[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

Of course, characters of Weyl modules are independent of the characteristic.

2 I SimpleCharacter( p, wt, t, r ) F
I SimpleCharacter( V , wt ) F

In the first form, the command SimpleCharacter returns the character of the simple module of highest
weight wt in characteristic p, for the root system of Type t and rank r . In the second form, V is an existing
Weyl module and the data p, t , and r are taken from the same data used to define V .

gap> SimpleCharacter(3, [3,0], "A", 2);
[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

3 I Character( lst ) F

returns the character of the submodule (of a Weyl module, or a quotient Weyl module) spanned by the
independent weight vectors in the given lst .
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gap> V:= WeylModule(2, [4,0], "A", 2);
<Type A2 Weyl module of highest weight [ 4, 0 ] at prime p = 2>
gap> m:= MaximalVectors(V);
[ 1*v0, y1*v0 ]
gap> simple:= SubWeylModule(V, m[2]);
[ y1*v0, y3*v0, y1*y3*v0, y1^(3)*v0, y1*y3^(2)*v0, y1^(2)*y3*v0, y3^(3)*v0,
y1^(3)*y3*v0, y1*y3^(3)*v0 ]

gap> Character(simple);
[ [ 2, 1 ], 1, [ 3, -1 ], 1, [ 1, 0 ], 1, [ -2, 3 ], 1, [ 0, -1 ], 1,
[ -1, 1 ], 1, [ 1, -3 ], 1, [ -3, 2 ], 1, [ -1, -2 ], 1 ]

In the preceding example, we obtain the character of the simple socle of the Type A2 Weyl module of highest
weight [4,0], in characteristic 2.

4 I DifferenceCharacter( c1, c2 ) F

DifferenceCharacter returns the difference of two given characters, or fail if the difference is not another
character. The arguments must be characters.

In the following example, we compute the character of the maximal submodule of the Weyl module of highest
weight [6,0] for Type A2 in characteristic 2.

gap> ch1:= Character( WeylModule(2, [6,0], "A", 2) );
[ [ 6, 0 ], 1, [ 4, 1 ], 1, [ 5, -1 ], 1, [ 2, 2 ], 1, [ 3, 0 ], 1, [ 0, 3 ],
1, [ 4, -2 ], 1, [ 1, 1 ], 1, [ -2, 4 ], 1, [ 2, -1 ], 1, [ -1, 2 ], 1,
[ -4, 5 ], 1, [ 3, -3 ], 1, [ 0, 0 ], 1, [ -3, 3 ], 1, [ -6, 6 ], 1,
[ 1, -2 ], 1, [ -2, 1 ], 1, [ -5, 4 ], 1, [ 2, -4 ], 1, [ -1, -1 ], 1,
[ -4, 2 ], 1, [ 0, -3 ], 1, [ -3, 0 ], 1, [ 1, -5 ], 1, [ -2, -2 ], 1,
[ -1, -4 ], 1, [ 0, -6 ], 1 ]

gap> ch2:= SimpleCharacter(2, [6,0], "A", 2);
[ [ 6, 0 ], 1, [ -2, 4 ], 1, [ 2, -4 ], 1, [ 2, 2 ], 1, [ -6, 6 ], 1,
[ -2, -2 ], 1, [ 4, -2 ], 1, [ -4, 2 ], 1, [ 0, -6 ], 1 ]

gap> d:= DifferenceCharacter(ch1, ch2);
[ [ 4, 1 ], 1, [ 5, -1 ], 1, [ 3, 0 ], 1, [ 0, 3 ], 1, [ 1, 1 ], 1,
[ 2, -1 ], 1, [ -1, 2 ], 1, [ -4, 5 ], 1, [ 3, -3 ], 1, [ 0, 0 ], 1,
[ -3, 3 ], 1, [ 1, -2 ], 1, [ -2, 1 ], 1, [ -5, 4 ], 1, [ -1, -1 ], 1,
[ 0, -3 ], 1, [ -3, 0 ], 1, [ 1, -5 ], 1, [ -1, -4 ], 1 ]

2.2 Decomposition numbers

If V is a given Weyl module, the command:

1 I DecompositionNumbers( V ) F

returns a list of highest weights of the composition factors of V , along with their corresponding multiplicities.

gap> V:= WeylModule(2, [8,0], "A", 2);
<Type A2 Weyl module of highest weight [ 8, 0 ] at prime p = 2>
gap> DecompositionNumbers(V);
[ [ 8, 0 ], 1, [ 6, 1 ], 1, [ 4, 2 ], 1, [ 0, 4 ], 1, [ 0, 1 ], 1 ]
gap> V:= WeylModule(3, [1,1], "A", 2);
<Type A2 Weyl module of highest weight [ 1, 1 ] at prime p = 3>
gap> DecompositionNumbers(V);
[ [ 1, 1 ], 1, [ 0, 0 ], 1 ]
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