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Abstract
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Chapter 1

Introduction

1.1 Purpose

This GAP Package supports digital computer computations with Weyl modules for a given simple
simply-connected algebraic group G in positive characteristic p. Actually the group G itself never
appears in any of the computations, which take place instead using the algebra of distributions (also
known as the hyperalgebra) of G, taken over the prime field. One should refer to [Jan03] for the
definition of the algebra of distributions, and other basic definitions and properties related to Weyl
modules.

The algorithms are based on the method of [Irv86] (see also [Xi99]) and build on the existing
Lie algebra functionality in GAP. In principle, one can work with arbitrary weights for an arbitrary
(simple) root system; in practice, the functionality is limited by the size of the objects being computed.
If your Weyl module has dimension in the thousands, you may have to wait a very long time for certain
computations to finish.

The package is possibly most useful for doing computations in characteristic p, where p is rela-
tively small relative to the Coxeter number. The general theory of Weyl modules [Jan03] includes a
number of basic properties that break down (or are not known to hold) if the characteristic is too small.
In such cases, explicit computations are often useful.

Recall that a maximal vector is a weight vector which is killed by the positive unipotent radical;
equivalently, it is killed by the positive part of the algebra of distributions.

The main technical idea underlying this package is the following fact: computing all the maximal
vectors in a given Weyl module V classifies the nonzero Weyl modules W for which a nonzero ho-
momorphism from W into V exists. Such homological information is a powerful aid to understanding
structural properties of the Weyl module V . The implementation of this idea involves a brute force
search through each dominant weight space, examing all linear combinations (over the prime field)
and compiling a list of the ones which are maximal. This exploits the pleasant fact that for Weyl
modules of small dimension, the weight spaces tend to be small enough to be manageable.

Although most of the functions deal with the simple simply-connected case, there are a few func-
tions for dealing with Schur algebras and symmetric groups. Those commands are limited in scope,
and provided mainly as a convenience.
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1.2 Counterexample to Donkin’s conjecture

In 2019, Chris Bendel, Dan Nakano, Cornelius Pillen, and Paul Sobaje [BNPS20] found the first
counterexample to Donkin’s tilting module conjecture using this package. This important advance led
to further development of the package.

1.3 ChangeLog

The initial release was Version 1.0 in 2009.
1. Versions 1.0 and 1.1 were released in 2009. The initial development was spurred by work on

the paper [BDM11].
2. Version 2.0 was released on 29 February 2024. The SubmoduleStructure command was

eliminated. Support was added for subquotients.
3. Version 2.1 (this version) was released on 21 June 2024. The documentation was completely

rewritten. There is more support for submodules and subquotients, including the new functions:
SocleLengthTwoQuotient, TwoFactorQuotientsContaining. These can be used to obtain Ext
information about a Weyl module.



Chapter 2

Weyl modules

This chapter discusses the commands available for computations (in positive characteristic p) with
Weyl modules, quotient Weyl modules, submodules of Weyl modules, and submodules of quotient
Weyl modules. Here the underlying Lie algebra is simply-connected and simple.

WARNING. In most cases, the dimension of space of maximal vectors of a given dominant weight
is either 0 or 1. Cases for which there exist two or more independent maximal vectors of the same
weight can lead to complications, such as a lack of rigidity in the submodule structure. Such situations
are relatively rare (and interesting). An example in Type D4 is the Weyl module of highest weight
[0,1,0,0], as pointed out on page 173 of [CPS75]. (I am grateful to Anton Cox for this reference.)

A Weyl module (as in the previous paragraph) with at least one weight space containing multi-
ple linearly independent maximal vectors is called ambiguous. Extra care is needed when studying
ambiguous modules.

2.1 Constructors

Here we consider functions that create Weyl modules, quotients of Weyl modules, submodules of
Weyl modules, and submodules of quotient Weyl modules (subquotients).

2.1.1 WeylModule

▷ WeylModule(p, wt, t, r) (operation)

▷ WeylModule(V, wt) (operation)

Returns: a WeylModule
The first form of the command (with four arguments) constructs a Weyl module of highest weight

wt in characteristic p of type t and rank r . The second form of the command (with two arguments)
constructs a Weyl module of highest weight wt of the same characteristic and root system as the first
parameter V , which must be an existing Weyl module.

Example
gap> V:= WeylModule(2,[1,0],"A",2);

V[ 1, 0 ]

gap> W:= WeylModule(V,[1,2]);

V[ 1, 2 ]

Weyl modules are attribute-storing objects (they remember their attributes after the first time they are
computed).
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2.1.2 QuotientWeylModule

▷ QuotientWeylModule(S) (operation)

Returns: a QuotientWeylModule
Constructs the quotient module V/S corresponding to the given submodule S . Here V is the ambi-

ent Weyl module of the given submodule S .
Example

gap> W:= WeylModule(2,[2,0],"A",2);

V[ 2, 0 ]

gap> Q:= QuotientWeylModule(SocleWeyl(W));

3-dimensional quotient of V[ 2, 0 ]

Quotient Weyl modules are attribute-storing objects.

2.1.3 SubWeylModule

▷ SubWeylModule(V, v) (operation)

▷ SubWeylModule(S, v) (operation)

▷ SubWeylModule(V, list) (operation)

▷ SubWeylModule(S, list) (operation)

▷ SubWeylModuleDirectSum(V, list) (operation)

Returns: a SubWeylModule
Submodules are attribute-storing objects. The first form constructs the submodule of the given

Weyl module V generated by the given element v . The second form constructs the submodule (of
the ambient Weyl module) generated by the given submodule S and given element v . The third
form constructs the submodule of the given Weyl module V generated by the given element list of
elements. The fourth form constructs the submodule generated by the given submodule S and given
list of elements. The fifth form constructs the submodule of the Weyl module V which is the direct
sum of the given list of submodules (which are assumed to be linearly independent, without checking).

Example
gap> W:= WeylModule(2,[2,0],"A",2);

V[ 2, 0 ]

gap> m:= MaximalVectors(W);

[ 1*v0, y1*v0 ]

gap> S:= SubWeylModule(W, m[2]);

3-dimensional submod of V[ 2, 0 ]

gap> SubWeylModule(S, m[1]);

6-dimensional submod of V[ 2, 0 ]

gap> SubWeylModule(W, m);

6-dimensional submod of V[ 2, 0 ]

gap> SubWeylModule(S, m);

6-dimensional submod of V[ 2, 0 ]

2.1.4 SubQuotientWeylModule

▷ SubWeylModule(Q, v) (operation)

▷ SubWeylModule(S, v) (operation)

▷ SubWeylModule(Q, list) (operation)

▷ SubWeylModule(S, list) (operation)
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▷ SubWeylModuleDirectSum(Q, list) (operation)

Returns: a SubQuotientWeylModule
Subquotients are attribute-storing objects. The first form constructs the submodule of the given

quotient Weyl module Q generated by the given element v . The second form constructs the subquotient
Weyl module (of the ambient quotient) generated by the given subquotient S and given element v .
The third form constructs the submodule of the given quotient Weyl module Q generated by the given
element list of elements. The fourth form constructs the subquotient Weyl module generated by
the given subquotient S and given list of elements. The fifth form constructs the submodule of the
quotient Weyl module Q which is the direct sum of the given list of subquotients (which are assumed
to be linearly independent, without checking).

Example
gap> W:= WeylModule(2,[2,0],"A",2);

V[ 2, 0 ]

gap> Q:= QuotientWeylModule(SocleWeyl(W));

3-dimensional quotient of V[ 2, 0 ]

gap> m:= MaximalVectors(Q);

[ 1*v0 ]

gap> S:= SubWeylModule(Q,m[1]);

3-dimensional submod of 3-dimensional quotient of V[ 2, 0 ]

gap> SubWeylModule(Q,m);

3-dimensional submod of 3-dimensional quotient of V[ 2, 0 ]

2.2 Filters

The following filters can be used to query whether or not an object has the indicated type.

2.2.1 IsWeylModule

▷ IsWeylModule(V) (filter)

Returns: true or false

2.2.2 IsQuotientWeylModule

▷ IsQuotientWeylModule(V) (filter)

Returns: true or false

2.2.3 IsSubWeylModule

▷ IsSubWeylModule(V) (filter)

Returns: true or false

2.2.4 IsSubQuotientWeylModule

▷ IsSubQuotientWeylModule(V) (filter)

Returns: true or false
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2.3 Operations common to all four types

This section documents operations and attributes that can be applied to Weyl modules, quotients,
submodules, and subquotients. In the following, V is a Weyl module, Q is a quotient, S is a submodule,
and T is a subquotient. Section 2.1 documents the constructors for these objects. Furthermore, wt is a
weight.

In all the examples in this section, we take V , S , Q , and T to be as follows.
Example

gap> V:=WeylModule(V,[4,0]);

V[ 4, 0 ]

gap> Dim(V);

15

gap> m:= MaximalVectors(V);

[ 1*v0, y1*v0 ]

gap> S:= SubWeylModule(V,m[2]);

9-dimensional submod of V[ 4, 0 ]

gap> Q:= QuotientWeylModule(S);

6-dimensional quotient of V[ 4, 0 ]

gap> mm:= MaximalVectors(Q);

[ 1*v0, y1^(2)*v0 ]

gap> T:= SubWeylModule(Q, mm[2]);

3-dimensional submod of 6-dimensional quotient of V[ 4, 0 ]

2.3.1 BasisVecs

▷ BasisVecs(Q) (operation)

▷ BasisVecs(S) (operation)

▷ BasisVecs(T) (operation)

▷ BasisVecs(V) (operation)

Example
gap> BasisVecs(V);

[ 1*v0, y1*v0, y3*v0, y1^(2)*v0, y1*y3*v0, y1^(3)*v0, y3^(2)*v0,

y1^(2)*y3*v0, y1^(4)*v0, y1*y3^(2)*v0, y1^(3)*y3*v0, y3^(3)*v0,

y1^(2)*y3^(2)*v0, y1*y3^(3)*v0, y3^(4)*v0 ]

gap> BasisVecs(S);

[ y1*v0, y3*v0, y1*y3*v0, y1^(3)*v0, y1*y3^(2)*v0, y1^(2)*y3*v0, y3^(3)*v0,

y1^(3)*y3*v0, y1*y3^(3)*v0 ]

gap> BasisVecs(Q);

[ 1*v0, y1^(2)*v0, y3^(2)*v0, y1^(4)*v0, y1^(2)*y3^(2)*v0, y3^(4)*v0 ]

gap> BasisVecs(T);

[ y1^(2)*v0, y3^(2)*v0, y1^(2)*y3^(2)*v0 ]

2.3.2 Character

▷ Character(Q) (attribute)

▷ Character(S) (attribute)

▷ Character(T) (attribute)

▷ Character(V) (attribute)

Returns: a list
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This function returns the character (as a list of weights and their multiplicities) of the given module.
Example

gap> Character(V);

[ [ 4, 0 ], 1, [ 2, 1 ], 1, [ 3, -1 ], 1, [ 0, 2 ], 1, [ 1, 0 ], 1,

[ -2, 3 ], 1, [ 2, -2 ], 1, [ -1, 1 ], 1, [ -4, 4 ], 1, [ 0, -1 ], 1,

[ -3, 2 ], 1, [ 1, -3 ], 1, [ -2, 0 ], 1, [ -1, -2 ], 1, [ 0, -4 ], 1 ]

gap> Character(Q);

[ [ 4, 0 ], 1, [ 0, 2 ], 1, [ 2, -2 ], 1, [ -4, 4 ], 1, [ -2, 0 ], 1,

[ 0, -4 ], 1 ]

gap> Character(S);

[ [ 2, 1 ], 1, [ 3, -1 ], 1, [ 1, 0 ], 1, [ -2, 3 ], 1, [ 0, -1 ], 1,

[ -1, 1 ], 1, [ 1, -3 ], 1, [ -3, 2 ], 1, [ -1, -2 ], 1 ]

gap> Character(T);

[ [ 0, 2 ], 1, [ 2, -2 ], 1, [ -2, 0 ], 1 ]

2.3.3 DecompositionNumbers

▷ DecompositionNumbers(Q) (attribute)

▷ DecompositionNumbers(S) (attribute)

▷ DecompositionNumbers(T) (attribute)

▷ DecompositionNumbers(V) (attribute)

Returns: a list
Returns a list of highest weights of simple composition factors (in the underlying characteristic)

and their corresponding multiplicities in the given module.
Example

gap> DecompositionNumbers(V);

[ [ 4, 0 ], 1, [ 2, 1 ], 1, [ 0, 2 ], 1 ]

gap> DecompositionNumbers(Q);

[ [ 4, 0 ], 1, [ 0, 2 ], 1 ]

gap> DecompositionNumbers(S);

[ [ 2, 1 ], 1 ]

gap> DecompositionNumbers(T);

[ [ 0, 2 ], 1 ]

2.3.4 Dim

▷ Dim(Q) (attribute)

▷ Dim(S) (attribute)

▷ Dim(T) (attribute)

▷ Dim(V) (attribute)

Returns: an integer (the dimension of the module)
Example

gap> Dim(V);

15

gap> Dim(Q);

6

gap> Dim(S);

9

gap> Dim(T);

3
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2.3.5 DominantWeights

▷ DominantWeights(Q) (attribute)

▷ DominantWeights(S) (attribute)

▷ DominantWeights(T) (attribute)

▷ DominantWeights(V) (attribute)

Returns: a list
This function lists the dominant weights occurring in the given module (with nonzero multiplicity).

The multiplicities are not given.
Example

gap> DominantWeights(V);

[ [ 4, 0 ], [ 2, 1 ], [ 0, 2 ], [ 1, 0 ] ]

gap> DominantWeights(Q);

[ [ 4, 0 ], [ 0, 2 ] ]

gap> DominantWeights(S);

[ [ 2, 1 ], [ 1, 0 ] ]

gap> DominantWeights(T);

[ [ 0, 2 ] ]

2.3.6 DominantWeightSpaces

▷ DominantWeightSpaces(Q) (attribute)

▷ DominantWeightSpaces(S) (attribute)

▷ DominantWeightSpaces(T) (attribute)

▷ DominantWeightSpaces(V) (attribute)

Returns: a list
The output of this function is a list consisting of a weight followed by a list of basis vectors for the

corresponding weight space.
Example

gap> DominantWeightSpaces(V);

[ [ 4, 0 ], [ 1*v0 ], [ 2, 1 ], [ y1*v0 ], [ 0, 2 ], [ y1^(2)*v0 ], [ 1, 0 ],

[ y1*y3*v0 ] ]

gap> DominantWeightSpaces(Q);

[ [ 4, 0 ], [ 1*v0 ], [ 0, 2 ], [ y1^(2)*v0 ] ]

gap> DominantWeightSpaces(S);

[ [ 2, 1 ], [ y1*v0 ], [ 1, 0 ], [ y1*y3*v0 ] ]

gap> DominantWeightSpaces(T);

[ [ 0, 2 ], [ y1^(2)*v0 ] ]

2.3.7 Weights

▷ Weights(Q) (attribute)

▷ Weights(S) (attribute)

▷ Weights(T) (attribute)

▷ Weights(V) (attribute)

Returns: a list
Lists the weights in the given module.

Example
gap> Weights(V);

[ [ 4, 0 ], [ 2, 1 ], [ 3, -1 ], [ 0, 2 ], [ 1, 0 ], [ -2, 3 ], [ 2, -2 ],
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[ -1, 1 ], [ -4, 4 ], [ 0, -1 ], [ -3, 2 ], [ 1, -3 ], [ -2, 0 ],

[ -1, -2 ], [ 0, -4 ] ]

gap> Weights(Q);

[ [ 4, 0 ], [ 0, 2 ], [ 2, -2 ], [ -4, 4 ], [ -2, 0 ], [ 0, -4 ] ]

gap> Weights(S);

[ [ 2, 1 ], [ 3, -1 ], [ 1, 0 ], [ -2, 3 ], [ 0, -1 ], [ -1, 1 ], [ 1, -3 ],

[ -3, 2 ], [ -1, -2 ] ]

gap> Weights(T);

[ [ 0, 2 ], [ 2, -2 ], [ -2, 0 ] ]

2.3.8 WeightSpaces

▷ WeightSpaces(Q) (attribute)

▷ WeightSpaces(S) (attribute)

▷ WeightSpaces(T) (attribute)

▷ WeightSpaces(V) (attribute)

Returns: a list
Computes a list consisting of weights followed by a basis of their corresponding weight spaces,

for each weight of the given module.
Example

gap> WeightSpaces(V);

[ [ 4, 0 ], [ 1*v0 ], [ 2, 1 ], [ y1*v0 ], [ 3, -1 ], [ y3*v0 ], [ 0, 2 ],

[ y1^(2)*v0 ], [ 1, 0 ], [ y1*y3*v0 ], [ -2, 3 ], [ y1^(3)*v0 ], [ 2, -2 ],

[ y3^(2)*v0 ], [ -1, 1 ], [ y1^(2)*y3*v0 ], [ -4, 4 ], [ y1^(4)*v0 ],

[ 0, -1 ], [ y1*y3^(2)*v0 ], [ -3, 2 ], [ y1^(3)*y3*v0 ], [ 1, -3 ],

[ y3^(3)*v0 ], [ -2, 0 ], [ y1^(2)*y3^(2)*v0 ], [ -1, -2 ],

[ y1*y3^(3)*v0 ], [ 0, -4 ], [ y3^(4)*v0 ] ]

gap> WeightSpaces(Q);

[ [ 4, 0 ], [ 1*v0 ], [ 0, 2 ], [ y1^(2)*v0 ], [ 2, -2 ], [ y3^(2)*v0 ],

[ -4, 4 ], [ y1^(4)*v0 ], [ -2, 0 ], [ y1^(2)*y3^(2)*v0 ], [ 0, -4 ],

[ y3^(4)*v0 ] ]

gap> WeightSpaces(S);

[ [ 2, 1 ], [ y1*v0 ], [ 3, -1 ], [ y3*v0 ], [ 1, 0 ], [ y1*y3*v0 ],

[ -2, 3 ], [ y1^(3)*v0 ], [ 0, -1 ], [ y1*y3^(2)*v0 ], [ -1, 1 ],

[ y1^(2)*y3*v0 ], [ 1, -3 ], [ y3^(3)*v0 ], [ -3, 2 ], [ y1^(3)*y3*v0 ],

[ -1, -2 ], [ y1*y3^(3)*v0 ] ]

gap> WeightSpaces(T);

[ [ 0, 2 ], [ y1^(2)*v0 ], [ 2, -2 ], [ y3^(2)*v0 ], [ -2, 0 ],

[ y1^(2)*y3^(2)*v0 ] ]

2.3.9 WeightSpace

▷ WeightSpace(Q, wt) (operation)

▷ WeightSpace(S, wt) (operation)

▷ WeightSpace(T, wt) (operation)

▷ WeightSpace(V, wt) (operation)

Returns: a list
Gives a basis for the weight space of the given weight wt .
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Example
gap> WeightSpace(V, [2,1]);

[ y1*v0 ]

gap> WeightSpace(Q, [2,1]);

[ ]

gap> WeightSpace(S, [2,1]);

[ y1*v0 ]

gap> WeightSpace(T, [2,-2]);

[ y3^(2)*v0 ]

2.3.10 TheCharacteristic

▷ TheCharacteristic(Q) (operation)

▷ TheCharacteristic(S) (operation)

▷ TheCharacteristic(T) (operation)

▷ TheCharacteristic(V) (operation)

Returns: an integer
Gives the characteristic of the base field.

Example
gap> TheCharacteristic(V);

2

gap> TheCharacteristic(Q);

2

gap> TheCharacteristic(S);

2

gap> TheCharacteristic(T);

2

2.3.11 TheLieAlgebra

▷ TheLieAlgebra(Q) (attribute)

▷ TheLieAlgebra(S) (attribute)

▷ TheLieAlgebra(T) (attribute)

▷ TheLieAlgebra(V) (attribute)

Returns: a Lie algebra
Gives the underlying Lie algebra for the given module.

Example
gap> TheLieAlgebra(V);

<Lie algebra of dimension 8 over Rationals>

gap> TheLieAlgebra(Q);

<Lie algebra of dimension 8 over Rationals>

gap> TheLieAlgebra(S);

<Lie algebra of dimension 8 over Rationals>

gap> TheLieAlgebra(T);

<Lie algebra of dimension 8 over Rationals>

The GAP manual gives additional operations for various properties and attributes of such Lie algebras
and their enveloping algebras.
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2.4 Operations common to Weyl modules, submodules, and quotients

In the following, Q is a quotient Weyl module, S is a submodule, and V is a Weyl module.

2.4.1 MaximalVectors

▷ MaximalVectors(Q, wt) (operation)

▷ MaximalVectors(Q) (attribute)

▷ MaximalVectors(S, wt) (operation)

▷ MaximalVectors(S) (attribute)

▷ MaximalVectors(V, wt) (operation)

▷ MaximalVectors(V) (attribute)

Returns: a list
Returns a list of linearly independent maximal vectors for the given dominant weight wt or for all

dominant weights of the module. The maximal vectors of a particular weight form a basis of the space
of maximal vectors of that weight.

In the following example, we assume that V , Q , and S are the same modules as defined in the
example at the beginning of Section 2.3.

Example
gap> MaximalVectors(V);

[ 1*v0, y1*v0 ]

gap> m:= MaximalVectors(V);

[ 1*v0, y1*v0 ]

gap> List(m, Weight);

[ [ 4, 0 ], [ 2, 1 ] ]

gap> MaximalVectors(V, [2,1]);

[ y1*v0 ]

gap> m:= MaximalVectors(Q);

[ 1*v0, y1^(2)*v0 ]

gap> List(m, Weight);

[ [ 4, 0 ], [ 0, 2 ] ]

gap> MaximalVectors(Q, [0,2]);

[ y1^(2)*v0 ]

gap> m:= MaximalVectors(S);

[ y1*v0 ]

gap> List(m, Weight);

[ [ 2, 1 ] ]

gap> MaximalVectors(S, [2,1]);

[ y1*v0 ]

2.4.2 IsAmbiguous

▷ IsAmbiguous(Q) (attribute)

▷ IsAmbiguous(S) (attribute)

▷ IsAmbiguous(V) (attribute)

Returns: true or false
The module is ambiguous if it has two or more linearly independent maximal vectors of the same

weight.
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Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> IsAmbiguous(V);

true

2.4.3 AmbiguousMaxVecs

▷ AmbiguousMaxVecs(Q) (attribute)

▷ AmbiguousMaxVecs(S) (attribute)

▷ AmbiguousMaxVecs(V) (attribute)

Returns: a list
This function lists a basis for the subspace of ambiguous maximal vectors.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> AmbiguousMaxVecs(V);

[ y1*y3*v0, y4*v0 ]

2.5 Operations on Weyl modules and their quotients

In the following, Q is a quotient Weyl module and V is a Weyl module.

2.5.1 ActOn

▷ ActOn(Q, u, v) (operation)

▷ ActOn(V, u, v) (operation)

Returns: An element of the Weyl module or quotient
This function returns the result of acting by the hyperalgebra element u on the given vector v .

Here v must be an element of the given Weyl module V or quotient Weyl module Q . The command
LatticeGeneratorsInUEA is a pre-existing GAP command; see the chapter on Lie algebras in the
GAP reference manual for further details. The lattice generators are regarded as standard generators
of the hyperalgebra for computing the action.

Example
gap> V:= WeylModule(2, [1,0], "G", 2);

V[ 1, 0 ]

gap> L:= TheLieAlgebra(V);

<Lie algebra of dimension 14 over Rationals>

gap> g:= LatticeGeneratorsInUEA(L);

[ y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, ( h13/1 ), ( h14/1 ) ]

gap> b:= BasisVecs(V);

[ 1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0 ]

gap> ActOn(V, g[1]^2 + g[7], b[1]);

0*v0

gap> ActOn(V, g[1]*g[6], b[1]);

y1*y6*v0
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2.5.2 Generator

▷ Generator(Q) (operation)

▷ Generator(V) (operation)

Returns: a highest weight vector
This returns a generating vector of the given module.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> Generator(V);

1*v0

2.5.3 GensSocleLayers

▷ GensSocleLayers(Q) (attribute)

▷ GensSocleLayers(V) (attribute)

Returns: a list
Returns a list of lists, such that the ith list gives a list of generators of the ith module in the socle

series of the input.
Example

gap> V:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> GensSocleLayers(V);

[ [ y1*y4*v0, y1*y3*y4*v0+y1*y6*v0+y3*y5*v0,

y1*y4*y6*v0+y3*y4*y5*v0+y4^(3)*v0 ], [ y4*v0, y1^(2)*y3*y6*v0 ],

[ y1*y3*v0 ], [ y5*y6*v0 ], [ y1*y6*v0+y4^(2)*v0 ], [ 1*v0 ] ]

2.5.4 PrintSocleLayers

▷ PrintSocleLayers(Q) (operation)

▷ PrintSocleLayers(V) (operation)

Returns: nothing
Prints the weights of the generators of the socle layers corresponding to the output of the previous

command. These are the highest weights of the simple composition factors in each socle layer.
In the following example, we assume that V is the same Weyl module defined in the preceding

example.
Example

gap> PrintSocleLayers(V);

Printing highest weights of simples in socle layers of V[ 3, 0 ]

Layer 1: [ [ 0, 1 ], [ 1, 0 ], [ 0, 0 ] ]

Layer 2: [ [ 2, 0 ], [ 0, 0 ] ]

Layer 3: [ [ 2, 0 ] ]

Layer 4: [ [ 0, 0 ] ]

Layer 5: [ [ 1, 0 ] ]

Layer 6: [ [ 3, 0 ] ]
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2.5.5 SocleSeries

▷ SocleSeries(Q) (attribute)

▷ SocleSeries(V) (attribute)

Returns: a list
Returns the socle series of its input module, as a list of submodules.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> SocleSeries(V);

[ 21-dimensional submod of V[ 3, 0 ], 28-dimensional submod of V[ 3, 0 ],

34-dimensional submod of V[ 3, 0 ], 35-dimensional submod of V[ 3, 0 ],

41-dimensional submod of V[ 3, 0 ], 77-dimensional submod of V[ 3, 0 ] ]

2.5.6 SocleWeyl

▷ SocleWeyl(V) (attribute)

▷ SocleWeyl(Q) (attribute)

Returns: a submodule
This function returns the socle of the given module.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> SocleWeyl(V);

21-dimensional submod of V[ 3, 0 ]

2.6 Operations on Weyl modules

This section documents additional operations that can be applied to an existing Weyl module V .

2.6.1 MaximalSubmodule

▷ MaximalSubmodule(V) (attribute)

Returns: a submodule
Calculates and returns the unique maximal submodule of the given Weyl module V .

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[ 3, 0 ]

gap> MaximalSubmodule(V);

7-dimensional submod of V[ 3, 0 ]

2.6.2 SimpleQuotient

▷ SimpleQuotient(V) (attribute)

Returns: a quotient Weyl module
Calculates and returns the simple quotient by the unique maximal submodule of the given Weyl

module.
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Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[ 3, 0 ]

gap> Q:= SimpleQuotient(V);

3-dimensional quotient of V[ 3, 0 ]

2.7 Operations on quotients

In the following, Q is a quotient Weyl module.

2.7.1 AmbientWeylModule

▷ AmbientWeylModule(Q) (operation)

Returns: a Weyl module
This returns the ambient Weyl module V corresponding to the given quotient Q .
In the following example, we assume that Q is the same as the quotient module defined in the

preceding example.
Example

gap> AmbientWeylModule(Q);

V[ 3, 0 ]

2.7.2 DefiningKernel

▷ DefiningKernel(Q) (operation)

Returns: a submodule
This returns the kernel corresponding to the given quotient Q . In other words, it returns the sub-

module S such that Q is isomorphic to V/S, where V is the ambient Weyl module.
In the following example, we assume that Q is the same as the quotient module in the preceding

example.
Example

gap> DefiningKernel(Q);

7-dimensional submod of V[ 3, 0 ]

2.8 Operations on submodules

In the following, S is a submodule.

2.8.1 AmbientWeylModule

▷ AmbientWeylModule(S) (operation)

Returns: a Weyl module
This function returns the ambient Weyl module containing the given submodule S .

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[ 3, 0 ]

gap> S:= MaximalSubmodule(V);

7-dimensional submod of V[ 3, 0 ]
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gap> AmbientWeylModule(S);

V[ 3, 0 ]

2.8.2 Generators

▷ Generators(S) (operation)

Returns: a list
Returns a list of generators of the given submodule S . In the following example, we assume that

S is the same as in the preceding example.
Example

gap> Generators(S);

[ y1*v0 ]

2.8.3 IsWithin

▷ IsWithin(S, v) (operation)

Returns: true or false
This function returns true if and only if the given vector v lies in the given submodule S .

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[ 3, 0 ]

gap> S:= MaximalSubmodule(V);

7-dimensional submod of V[ 3, 0 ]

gap> g:= Generators(S);

[ y1*v0 ]

gap> IsWithin(S, g[1]);

true

2.8.4 NextSocle

▷ NextSocle(S) (operation)

Returns: a SubWeylModule
This function returns the maximal submodule T containing the given submodule S such that T/S

is semisimple. If S happens to be an element of the socle series then the function returns the next
element in the socle series.

Example
gap> W:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> g:= Generators(SocleWeyl(W));

[ y1*y4*v0, y1*y3*y4*v0+y1*y6*v0+y3*y5*v0, y1*y4*y6*v0+y3*y4*y5*v0+y4^(3)*v0 ]

gap> S:= SubWeylModule(W, g[1]);

14-dimensional submod of V[ 3, 0 ]

gap> T:= NextSocle(S);

21-dimensional submod of V[ 3, 0 ]

gap> DecompositionNumbers(T);

[ [ 0, 1 ], 1, [ 1, 0 ], 1, [ 0, 0 ], 1 ]

In the above example, S is a simple submodule of the socle, and NextSocle(S) computes an extension
of it by two simples.
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2.8.5 GensNextSocle

▷ GensNextSocle(S) (operation)

Returns: a list
This function returns a list of generators of the submodule returned by NextSocle(S). In the

example below, S is the submodule constructed in the preceding example.
Example

gap> g:= GensNextSocle(S);

[ y1*y6*v0+y3*y5*v0, y4^(3)*v0 ]

gap> List(g, Weight);

[ [ 1, 0 ], [ 0, 0 ] ]

2.8.6 SocleLengthTwoQuotient

▷ SocleLengthTwoQuotient(S) (attribute)

Returns: a QuotientWeylModule
This function returns a quotient of the ambient Weyl module V with socle series length at most

two such that S lies in its defining kernel.
Example

gap> W:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> ss:= SocleSeries(W);

[ 21-dimensional submod of V[ 3, 0 ], 28-dimensional submod of V[ 3, 0 ],

34-dimensional submod of V[ 3, 0 ], 35-dimensional submod of V[ 3, 0 ],

41-dimensional submod of V[ 3, 0 ], 77-dimensional submod of V[ 3, 0 ] ]

gap> amv:= AmbiguousMaxVecs(W);

[ y1*y3*v0, y4*v0 ]

gap> Q1:= SocleLengthTwoQuotient(ss[4]);

42-dimensional quotient of V[ 3, 0 ]

gap> PrintSocleLayers(Q1);

Printing highest weights of simples in socle layers of

42-dimensional quotient of V[ 3, 0 ]

Layer 1: [ [ 1, 0 ] ]

Layer 2: [ [ 3, 0 ] ]

gap> Q2:= SocleLengthTwoQuotient(SubWeylModule(W,amv[1]+amv[2]));

48-dimensional quotient of V[ 3, 0 ]

gap> PrintSocleLayers(Q2);

Printing highest weights of simples in socle layers of

48-dimensional quotient of V[ 3, 0 ]

Layer 1: [ [ 2, 0 ], [ 1, 0 ] ]

Layer 2: [ [ 3, 0 ] ]

Here we see an example of an ambiguous Weyl module with different quotients of socle length two.

2.8.7 TwoFactorQuotientsContaining

▷ TwoFactorQuotientsContaining(S) (attribute)

Returns: a list of QuotientWeylModules
This returns a list of quotients of the ambient Weyl module, each having exactly two composition

factors, each of which contain S in their defining kernel. Such quotients realize non-split extensions
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of the simple top composition factor of V . NOTE. Even when S is the trivial module, we do not claim
that the output will give all of the extensions.

In the following example, we assume that W, amv are as defined in the preceding example.
Example

gap> Q:= TwoFactorQuotientsContaining(SubWeylModule(W,amv[1]+amv[2]));

[ 42-dimensional quotient of V[ 3, 0 ], 42-dimensional quotient of V[ 3, 0 ] ]

gap> PrintSocleLayers(Q[1]);

Printing highest weights of simples in socle layers of

42-dimensional quotient of V[ 3, 0 ]

Layer 1: [ [ 1, 0 ] ]

Layer 2: [ [ 3, 0 ] ]

gap> PrintSocleLayers(Q[2]);

Printing highest weights of simples in socle layers of

42-dimensional quotient of V[ 3, 0 ]

Layer 1: [ [ 2, 0 ] ]

Layer 2: [ [ 3, 0 ] ]

Here we see that the ambient Weyl module has at least two non-isomorphic extensions realized in
its second radical. Comparing with information from an earlier example (see PrintSocleLayers

(2.5.4)) reveals that the Weyl module in question is non-rigid (its socle and radical series do not
coincide).

2.9 Operations on subquotients

In the following, T is a subquotient.

2.9.1 AmbientQuotient

▷ AmbientQuotient(T) (operation)

Returns: a QuotientWeylModule
This function returns the ambient quotient Weyl module containing the given subquotient T .

Example
gap> W:= WeylModule(2,[3,0],"G",2);

V[ 3, 0 ]

gap> m:= AmbiguousMaxVecs(W); List(m, Weight);

[ y1*y3*v0, y4*v0 ]

[ [ 2, 0 ], [ 2, 0 ] ]

gap> Q:= QuotientWeylModule(SubWeylModule(W,m[1]));

64-dimensional quotient of V[ 3, 0 ]

gap> subQ:= SubWeylModule(Q, m[2]);

21-dimensional submod of 64-dimensional quotient of V[ 3, 0 ]

gap> AmbientQuotient(subQ);

64-dimensional quotient of V[ 3, 0 ]

2.9.2 Generators

▷ Generators(T) (operation)

Returns: a list



WeylModules 22

This returns a list of generators for the given subquotient T . In the next example, we assume
that subQ is the subquotient constructed in the example for the AmbientQuotient (2.9.1) command,
documented above.

Example
gap> Generators(subQ);

[ y4*v0 ]

2.9.3 IsWithin

▷ IsWithin(T, v) (operation)

Returns: true or false
This returns true if and only if the image of the given vector v (under the quotient map from the

ambient Weyl module to the ambient quotient) lies in the given subquotient T . In the next example,
we assume that subQ, Q, and m are as defined in the example for AmbientQuotient (2.9.1) above.

Example
gap> IsWithin(subQ,m[2]);

true

gap> IsWithin(subQ, Generator(Q));

false

2.9.4 NextSocle

▷ NextSocle(T) (operation)

Returns: a SubQuotientWeylModule
This function returns the maximal subquotient T containing the given subquotient S such that T/S

is semisimple. If S happens to be an element of the socle series then the function returns the next
element in the socle series.

In the next example, we assume that subQ is the subquotient constructed in the example for the
AmbientQuotient (2.9.1) command, documented above.

Example
gap> DecompositionNumbers(subQ);

[ [ 2, 0 ], 1, [ 0, 1 ], 1, [ 0, 0 ], 1 ]

gap> N:= NextSocle(subQ);

22-dimensional submod of 64-dimensional quotient of V[ 3, 0 ]

gap> DecompositionNumbers(N);

[ [ 2, 0 ], 1, [ 0, 1 ], 1, [ 0, 0 ], 2 ]



Chapter 3

Weights and Characters

This chapter documents additional functions available for computation of weights and characters.

3.1 Weights

3.1.1 Weight (for IsLeftAlgebraModuleElement)

▷ Weight(elt) (operation)

Returns: a list of integers
The weight of the given element elt is calculated and returned.

Example
gap> V:= WeylModule(3,[3,3],"A",2);

V[ 3, 3 ]

gap> m:= MaximalVectors(V);

[ 1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,

y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

gap> Weight(m[2]);

[ 1, 4 ]

gap> List(m,Weight);

[ [ 3, 3 ], [ 1, 4 ], [ 4, 1 ], [ 0, 3 ], [ 3, 0 ], [ 1, 1 ] ]

NOTE. The above trick of applying the Weight function across an entire list lst of vectors, with the
command List(lst, Weight), is very useful in many situations. This capability is built in to the
List function in GAP.

3.2 Characters

We have already seen the function Character (2.3.2), that computes the (formal) character of a given
Weyl module, quotient, submodule, or subquotient. We now consider some additional functions for
computing characters.

3.2.1 DecomposeCharacter

▷ DecomposeCharacter(ch, p, typ, rk) (operation)

Returns: a list (of simple highest weights and their multiplicities)

23
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If ch is a given character (of some module) then this function computes the multiplicities of the
simple characters in ch , thus obtaining the decomposition numbers of the module. Here it is necessary
to specify the characteristic p and root system (of type typ and rank rk ) for the simple characters.
For instance, this can be used to decompose tensor products.

Example
gap> V:= WeylModule(2,[2,0],"A",2);

V[ 2, 0 ]

gap> ch:= ProductCharacter(Character(V),Character(V));

[ [ 4, 0 ], 1, [ 2, 1 ], 2, [ 3, -1 ], 2, [ 0, 2 ], 3, [ 1, 0 ], 4,

[ 2, -2 ], 3, [ -2, 3 ], 2, [ -1, 1 ], 4, [ 0, -1 ], 4, [ 1, -3 ], 2,

[ -4, 4 ], 1, [ -3, 2 ], 2, [ -2, 0 ], 3, [ -1, -2 ], 2, [ 0, -4 ], 1 ]

gap> DecomposeCharacter(ch,2,"A",2);

[ [ 4, 0 ], 1, [ 2, 1 ], 2, [ 0, 2 ], 3, [ 1, 0 ], 2 ]

3.2.2 DifferenceCharacter

▷ DifferenceCharacter(ch1, ch2) (operation)

Returns: a list (a character)
If ch1 and ch2 are given characters, this function returns their formal difference character. It is

used in the definition of the DecomposeCharacter function.
Example

gap> DifferenceCharacter(Character(V),Character(V));

[ ]

The empty list here implements the zero character.

3.2.3 ProductCharacter

▷ ProductCharacter(ch1, ch2) (operation)

Returns: a list (a character)
Returns the product character of its inputs ch1 and ch2 . If ch1 and ch2 are characters of modules

then the output of this function is the character of the tensor product of the modules.
Example

gap> V:= WeylModule(2,[2,0],"A",2);

V[ 2, 0 ]

gap> ch:= ProductCharacter(Character(V),Character(V));

[ [ 4, 0 ], 1, [ 2, 1 ], 2, [ 3, -1 ], 2, [ 0, 2 ], 3, [ 1, 0 ], 4,

[ 2, -2 ], 3, [ -2, 3 ], 2, [ -1, 1 ], 4, [ 0, -1 ], 4, [ 1, -3 ], 2,

[ -4, 4 ], 1, [ -3, 2 ], 2, [ -2, 0 ], 3, [ -1, -2 ], 2, [ 0, -4 ], 1 ]

By applying the function DecomposeCharacter (3.2.1) we can decompose tensor products in positive
characteristic.

3.2.4 SimpleCharacter

▷ SimpleCharacter(p, wt, typ, rk) (operation)

Returns: a list (a character)
Computes the simple character of highest weight wt in characteristic p . The arguments typ and

rk specify the type and rank of the underlying root system. The function uses Steinberg’s tensor
product theorem.
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Example
gap> SimpleCharacter(2,[2,0],"A",2);

[ [ 2, 0 ], 1, [ -2, 2 ], 1, [ 0, -2 ], 1 ]

Another way to compute the same result is to compute the Character of the output of
SimpleQuotient(V), where V is the WeylModule in the same characteristic and root system with
the same highest weight.

Example
gap> V:= WeylModule(2,[2,0],"A",2);

V[ 2, 0 ]

gap> Character(SimpleQuotient(V));

[ [ 2, 0 ], 1, [ -2, 2 ], 1, [ 0, -2 ], 1 ]



Chapter 4

Schur Algebras

The decomposition numbers for the algebraic group SLn of type An−1 determine the decomposition
numbers for the corresponding Schur algebras, and thus also determine the decomposition numbers
for symmetric groups. People working with Schur algebras and symmetric groups often prefer to
use partitions to label highest weights. Although it is trivial to convert between SLn weight notation
and partition notation, for the sake of convenience, we provide a few functions that perform such
conversions, and various other functions related to Schur algebras and symmetric groups.

NOTE. The SymmetricGroupDecompositionMatrix (4.2.3) function for symmetric group de-
composition numbers is quite slow, so readers interested in symmetric group computations may want
to look elsewhere for more effcient tools.

4.1 Constructor and filter

Weyl modules for a Schur algebra are constructed by the following.

4.1.1 SchurAlgebraWeylModule

▷ SchurAlgebraWeylModule(p, ptn) (operation)

Returns: a Weyl module
This function creates and returns a Weyl module of highest weight defined by the given partition

ptn . The length of the partition, which may be padded by zeros as necessary, defines the underlying
GLn and the Schur algebra degree.

Example
gap> V:= SchurAlgebraWeylModule(3,[1,1,0]);

Schur algebra module V[ 1, 1, 0 ]

Here we define the Weyl module for GL3 of highest weight [1, 1] in the partition notation.

4.1.2 IsSchurAlgebraWeylModule

▷ IsSchurAlgebraWeylModule(V) (filter)

Returns: true or false
Returns true if and only if the given V is a Schur algebra Weyl module.

26
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4.2 Decomposition matrices

Decomposition matrices for Schur algebras and symmteric groups in positive characteristic can be
computed.

4.2.1 SchurAlgebraDecompositionMatrix

▷ SchurAlgebraDecompositionMatrix(p, n, r) (operation)

Returns: a matrix
Returns the decomposition matrix for the Schur algebra S(n,r) in characteristc p . The rows and

columns of the matrix are indexed by the partitions produced by BoundedPartitions(n,r) ordered
the same as in the output of that function.

Example
gap> SchurAlgebraDecompositionMatrix(3,4,3);

[ [ 1, 1, 0 ], [ 0, 1, 1 ], [ 0, 0, 1 ] ]

Here we compute the decomposition matrix for S(4,3) in characteristic 3. The rows and columns of
the matrix are indexed by the following partitions:

Example
gap> BoundedPartitions(4,3);

[ [ 3, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, 0 ] ]

4.2.2 SymmetricGroupDecompositionNumbers

▷ SymmetricGroupDecompositionNumbers(p, ptn) (operation)

Returns: a list
Returns the decomposition numbers of the dual Specht module indexed by the given partition ptn

in characteristic p .
Example

gap> SymmetricGroupDecompositionNumbers(2,[2,1,1]);

[ [ 2, 1, 1 ], 1, [ 1, 1, 1, 1 ], 1 ]

4.2.3 SymmetricGroupDecompositionMatrix

▷ SymmetricGroupDecompositionMatrix(p, n) (operation)

Returns: a matrix
Returns the decomposition matrix for the symmetric group on n letters in characteristc p . The

rows of the matrix are labeled by the partitions of n in the order produced by AllPartitions(n), and
the columns are labeled by the p -restricted partitions of n . NOTE. GAP has a built-in Partitions

function that also gives all the partitions of n , but the ordering is different.
Example

gap> SymmetricGroupDecompositionMatrix(2,4);

[ [ 0, 1 ], [ 1, 1 ], [ 1, 0 ], [ 1, 1 ], [ 0, 1 ] ]

gap> AllPartitions(4);

[ [ 4 ], [ 3, 1 ], [ 2, 2 ], [ 2, 1, 1 ], [ 1, 1, 1, 1 ] ]

gap> pRestrictedPartitions(2,4);

[ [ 2, 1, 1 ], [ 1, 1, 1, 1 ] ]
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4.3 Partitions

This section documents a number of functions for converting between weights and partitions (in type
A) as well as other related functions.

4.3.1 CompositionToWeight

▷ CompositionToWeight(mu) (operation)

Returns: a list (a weight)
This converts the given composition mu into a weight by taking successive differences of its parts.

Example
gap> CompositionToWeight([1,2,0,1]);

[ -1, 2, -1 ]

4.3.2 WeightToComposition

▷ WeightToComposition(r, wt) (operation)

Returns: a list (a composition) or fail
This converts the given weight wt into a composition of degree r . Without degree information,

this function is ill defined. Returns fail if the operation is impossible.
Example

gap> WeightToComposition(4,[-1, 2, -1]);

[ 1, 2, 0, 1 ]

gap> WeightToComposition(8,[-1, 2, -1]);

[ 2, 3, 1, 2 ]

gap> WeightToComposition(6,[-1, 2, -1]);

fail

4.3.3 AllPartitions

▷ AllPartitions(n) (operation)

Returns: a list of partitions
Lists all the partitions of n . Note that GAP has a built-in Partitions function that also gives all the

partitions of n , but with a different ordering.
Example

gap> AllPartitions(5);

[ [ 5 ], [ 4, 1 ], [ 3, 2 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 2, 1, 1, 1 ],

[ 1, 1, 1, 1, 1 ] ]

4.3.4 BoundedPartitions

▷ BoundedPartitions(n, r, s) (operation)

▷ BoundedPartitions(n, r) (operation)

Returns: a list of partitions
Returns a list of n part partitions of degree r such that each part lies in the closed interval [0,s ].

The second form returns a list of n part partitions of degree r . Note that BoundedPartitions(n,r)
is equivalent to BoundedPartitions(n,r,r).
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Example
gap> BoundedPartitions(5,3,2);

[ [ 2, 1, 0, 0, 0 ], [ 1, 1, 1, 0, 0 ] ]

gap> BoundedPartitions(5,3,3);

[ [ 3, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 1, 1, 1, 0, 0 ] ]

gap> BoundedPartitions(5,3);

[ [ 3, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 1, 1, 1, 0, 0 ] ]

4.3.5 Conjugate

▷ Conjugate(ptn) (operation)

Returns: a list (a partition)
Returns the conjugate partition of ptn .

Example
gap> Conjugate([4]);

[ 1, 1, 1, 1 ]

gap> Conjugate([2,1,1,1]);

[ 4, 1 ]

4.3.6 pRegular

▷ pRegular(p, ptn) (operation)

Returns: true or false
Returns true if and only if the given partition ptn is p -regular.

Example
gap> pRegular(3,[3,1,1]);

true

gap> pRegular(2,[3,1,1]);

false

4.3.7 pRegularPartitions

▷ pRegularPartitions(p, n) (operation)

Returns: a list
Returns a list of all p -regular partitions of n .

Example
gap> pRegularPartitions(3,5);

[ [ 4, 1 ], [ 3, 1, 1 ], [ 5 ], [ 2, 2, 1 ], [ 3, 2 ] ]

gap> pRegularPartitions(2,5);

[ [ 3, 2 ], [ 4, 1 ], [ 5 ] ]

4.3.8 pRestricted

▷ pRestricted(p, ptn) (operation)

Returns: true or false
Returns true if and only if the given partition ptn is p -restricted.
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Example
gap> pRestricted(3,[3,1,1]);

true

gap> pRestricted(2,[3,1]);

false

4.3.9 pRestrictedPartitions

▷ pRestrictedPartitions(p, n) (operation)

Returns: a list
Returns a list of all p -restricted partitions of n .

Example
gap> pRestrictedPartitions(3,5);

[ [ 3, 2 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 2, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]

gap> pRestrictedPartitions(2,5);

[ [ 2, 2, 1 ], [ 2, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]

4.3.10 Mullineux

▷ Mullineux(p, mu) (operation)

Returns: a list
Applies the Mullineux map to the partition mu in characteristic p .

Example
gap> Mullineux(2,[1,1,1]);

p-singular!

gap> Mullineux(2,[3]);

[ 3 ]

gap> Mullineux(3,[3]);

[ 2, 1 ]

gap> Mullineux(3,[2,1]);

[ 3 ]
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