WeylModules

for simple simply-connected algebraic groups

2.1

21 June 2024

Stephen Doty

Stephen Doty

Email: doty@math.luc.edu
Homepage: https://doty.math.luc.edu
Address: Department of Mathematics and Statistics
Loyola University Chicago
Chicago, Illinois 60660 USA

Abstract

WeylModules is a GAP Package supporting computer computations with Weyl modules for simple simplyconnected algebraic groups.

Copyright

© Copyright 2009-2024 by Stephen R. Doty.
This package is distributed under the terms and conditions of the GNU Public License Version 2 or (at your option) any later version.

Acknowledgements

The development of this software was initiated in June 2003 while the author was visiting the Department of Pure Mathematics and Mathematical Statistics (DPMMS) at the University of Cambridge, and continued during subsequent visits to DPMMS in June 2004 and in May through July of 2007. The author was supported by a Yip Fellowship at Magdalene College, Cambridge in 2007. The final stages of development took place in Chicago and in January 2009 at Universität Bielefeld, where the author was supported by a Mercator grant from the Deutsche Forschungsgemeinschaft (DFG).

The existence of this software owes much to the gentle prodding of Stuart Martin. Thanks are also due to Yutaka Yoshii for testing an earlier version of the software, and Matt Fayers for supplying his GAP code for computing the Mullineux map.

Contents

1 Introduction 4
1.1 Purpose 4
1.2 Counterexample to Donkin's conjecture 5
1.3 ChangeLog 5
2 Weyl modules 6
2.1 Constructors 6
2.2 Filters 8
2.3 Operations common to all four types 9
2.4 Operations common to Weyl modules, submodules, and quotients 14
2.5 Operations on Weyl modules and their quotients 15
2.6 Operations on Weyl modules 17
2.7 Operations on quotients 18
2.8 Operations on submodules 18
2.9 Operations on subquotients 21
3 Weights and Characters 23
3.1 Weights 23
3.2 Characters 23
4 Schur Algebras 26
4.1 Constructor and filter 26
4.2 Decomposition matrices 27
4.3 Partitions 28
References 31
Index 32

Chapter 1

Introduction

1.1 Purpose

This GAP Package supports digital computer computations with Weyl modules for a given simple simply-connected algebraic group G in positive characteristic p. Actually the group G itself never appears in any of the computations, which take place instead using the algebra of distributions (also known as the hyperalgebra) of G, taken over the prime field. One should refer to [Jan03] for the definition of the algebra of distributions, and other basic definitions and properties related to Weyl modules.

The algorithms are based on the method of [Irv86] (see also [Xi99]) and build on the existing Lie algebra functionality in GAP. In principle, one can work with arbitrary weights for an arbitrary (simple) root system; in practice, the functionality is limited by the size of the objects being computed. If your Weyl module has dimension in the thousands, you may have to wait a very long time for certain computations to finish.

The package is possibly most useful for doing computations in characteristic p, where p is relatively small relative to the Coxeter number. The general theory of Weyl modules [Jan03] includes a number of basic properties that break down (or are not known to hold) if the characteristic is too small. In such cases, explicit computations are often useful.

Recall that a maximal vector is a weight vector which is killed by the positive unipotent radical; equivalently, it is killed by the positive part of the algebra of distributions.

The main technical idea underlying this package is the following fact: computing all the maximal vectors in a given Weyl module V classifies the nonzero Weyl modules W for which a nonzero homomorphism from W into V exists. Such homological information is a powerful aid to understanding structural properties of the Weyl module V. The implementation of this idea involves a brute force search through each dominant weight space, examing all linear combinations (over the prime field) and compiling a list of the ones which are maximal. This exploits the pleasant fact that for Weyl modules of small dimension, the weight spaces tend to be small enough to be manageable.

Although most of the functions deal with the simple simply-connected case, there are a few functions for dealing with Schur algebras and symmetric groups. Those commands are limited in scope, and provided mainly as a convenience.

1.2 Counterexample to Donkin's conjecture

In 2019, Chris Bendel, Dan Nakano, Cornelius Pillen, and Paul Sobaje [BNPS20] found the first counterexample to Donkin's tilting module conjecture using this package. This important advance led to further development of the package.

1.3 ChangeLog

The initial release was Version 1.0 in 2009.

1. Versions 1.0 and 1.1 were released in 2009. The initial development was spurred by work on the paper [BDM11].
2. Version 2.0 was released on 29 February 2024. The SubmoduleStructure command was eliminated. Support was added for subquotients.
3. Version 2.1 (this version) was released on 21 June 2024. The documentation was completely rewritten. There is more support for submodules and subquotients, including the new functions: SocleLengthTwoQuotient, TwoFactorQuotientsContaining. These can be used to obtain Ext information about a Weyl module.

Chapter 2

Weyl modules

This chapter discusses the commands available for computations (in positive characteristic p) with Weyl modules, quotient Weyl modules, submodules of Weyl modules, and submodules of quotient Weyl modules. Here the underlying Lie algebra is simply-connected and simple.

WARNING. In most cases, the dimension of space of maximal vectors of a given dominant weight is either 0 or 1 . Cases for which there exist two or more independent maximal vectors of the same weight can lead to complications, such as a lack of rigidity in the submodule structure. Such situations are relatively rare (and interesting). An example in Type D_{4} is the Weyl module of highest weight [$0,1,0,0]$, as pointed out on page 173 of [CPS75]. (I am grateful to Anton Cox for this reference.)

A Weyl module (as in the previous paragraph) with at least one weight space containing multiple linearly independent maximal vectors is called ambiguous. Extra care is needed when studying ambiguous modules.

2.1 Constructors

Here we consider functions that create Weyl modules, quotients of Weyl modules, submodules of Weyl modules, and submodules of quotient Weyl modules (subquotients).

2.1.1 WeylModule

```
\triangleright ~ W e y l M o d u l e ( p , ~ w t , ~ t , ~ r ) ~ ( o p e r a t i o n ) ~
\triangleright WeylModule(V, wt)}\quad\mathrm{ (operation)
```

Returns: a WeylModule
The first form of the command (with four arguments) constructs a Weyl module of highest weight wt in characteristic p of type t and rank r. The second form of the command (with two arguments) constructs a Weyl module of highest weight wt of the same characteristic and root system as the first parameter V, which must be an existing Weyl module.

```
gap> V:= WeylModule(2,[1,0],"A",2);
V[ 1, 0 ]
gap> W:= WeylModule(V, [1,2]);
V[ 1, 2 ]
```

Weyl modules are attribute-storing objects (they remember their attributes after the first time they are computed).

2.1.2 QuotientWeylModule

\triangleright QuotientWeylModule (S)

(operation)
Returns: a QuotientWeylModule
Constructs the quotient module V / S corresponding to the given submodule S. Here V is the ambient Weyl module of the given submodule S.

Example

```
gap> W:= WeylModule(2, [2,0],"A",2);
V[ 2, 0 ]
gap> Q:= QuotientWeylModule(SocleWeyl(W));
3-dimensional quotient of V[ 2, 0 ]
```

Quotient Weyl modules are attribute-storing objects.

2.1.3 SubWeylModule

\triangleright SubWeylModule (V, V)	(operation)
\triangleright SubWeylModule (S, V)	(operation)
\triangleright SubWeylModule $(V$, list)	(operation)
\triangleright SubWeylModule $(S$, list)	(operation)
\triangleright SubWeylModuleDirectSum(V, list)	(operation)

Returns: a SubWeylModule

Submodules are attribute-storing objects. The first form constructs the submodule of the given Weyl module V generated by the given element v. The second form constructs the submodule (of the ambient Weyl module) generated by the given submodule S and given element v. The third form constructs the submodule of the given Weyl module V generated by the given element list of elements. The fourth form constructs the submodule generated by the given submodule S and given list of elements. The fifth form constructs the submodule of the Weyl module V which is the direct sum of the given list of submodules (which are assumed to be linearly independent, without checking).

```
gap> W:= WeylModule(2, [2,0],"A", 2);
V[2,0]
gap> m:= MaximalVectors(W);
[ 1*v0, y1*v0 ]
gap> S:= SubWeylModule(W, m[2]);
3-dimensional submod of V[ 2, 0 ]
gap> SubWeylModule(S, m[1]);
6-dimensional submod of V[ 2, 0 ]
gap> SubWeylModule(W, m);
6-dimensional submod of V[ 2, 0 ]
gap> SubWeylModule(S, m);
6-dimensional submod of V[ 2, 0 ]
```


2.1.4 SubQuotientWeylModule

\triangleright SubWeylModule $(Q, \quad v)$	(operation)
\triangleright SubWeylModule $(S$, v)	(operation)
\triangleright SubWeylModule $(Q$, list)	(operation)
\triangleright SubWeylModule $(S$, list)	(operation)

Returns: a SubQuotientWeylModule
Subquotients are attribute-storing objects. The first form constructs the submodule of the given quotient Weyl module Q generated by the given element v. The second form constructs the subquotient Weyl module (of the ambient quotient) generated by the given subquotient S and given element v. The third form constructs the submodule of the given quotient Weyl module Q generated by the given element list of elements. The fourth form constructs the subquotient Weyl module generated by the given subquotient S and given list of elements. The fifth form constructs the submodule of the quotient Weyl module Q which is the direct sum of the given list of subquotients (which are assumed to be linearly independent, without checking).

```
gap> W:= WeylModule(2,[2,0],"A", 2);
V[2,0 ]
gap> Q:= QuotientWeylModule(SocleWeyl(W));
3-dimensional quotient of V[ 2, 0 ]
gap> m:= MaximalVectors(Q);
[ 1*v0 ]
gap> S:= SubWeylModule(Q,m[1]);
3-dimensional submod of 3-dimensional quotient of V[ 2, 0 ]
gap> SubWeylModule(Q,m);
3-dimensional submod of 3-dimensional quotient of V[ 2, 0 ]
```


2.2 Filters

The following filters can be used to query whether or not an object has the indicated type.

2.2.1 IsWeylModule

```
\triangleright IsWeylModule(V)
(filter)
Returns: true or false
```


2.2.2 IsQuotientWeylModule

\triangleright IsQuotientWeylModule (V)
(filter)
Returns: true or false

2.2.3 IsSubWeylModule

```
\triangleright IsSubWeylModule(V)
Returns: true or false
```


2.2.4 IsSubQuotientWeyIModule

```
\triangleright IsSubQuotientWeylModule(V)

Returns: true or false

\subsection*{2.3 Operations common to all four types}

This section documents operations and attributes that can be applied to Weyl modules, quotients, submodules, and subquotients. In the following, \(V\) is a Weyl module, \(Q\) is a quotient, \(S\) is a submodule, and \(T\) is a subquotient. Section 2.1 documents the constructors for these objects. Furthermore, wt is a weight.

In all the examples in this section, we take \(V, S, Q\), and \(T\) to be as follows.
```

gap> V:=WeylModule(V,[4,0]);
V[4, 0]
gap> Dim(V);
15
gap> m:= MaximalVectors(V);
[1*v0, y1*v0]
gap> S:= SubWeylModule(V,m[2]);
9-dimensional submod of V[4, 0]
gap> Q:= QuotientWeylModule(S);
6-dimensional quotient of V[4, 0]
gap> mm:= MaximalVectors(Q);
[1*v0, y1~}(2)*v0]
gap> T:= SubWeylModule(Q, mm[2]);
3-dimensional submod of 6-dimensional quotient of V[4, 0]

```

\subsection*{2.3.1 BasisVecs}
\begin{tabular}{ll}
\(\triangleright \operatorname{BasisVecs}(Q)\) & (operation) \\
\(\triangleright \operatorname{BasisVecs}(S)\) & (operation) \\
\(\triangleright \operatorname{BasisVecs}(T)\) & (operation) \\
\(\triangleright \operatorname{BasisVecs}(V)\) & (operation)
\end{tabular}
```

gap> BasisVecs(V);
[1*v0, y1*v0, y3*v0, y1~}(2)*v0, y1*y3*v0, y1~(3)*v0, y3^(2)*v0
y1^}(2)*\textrm{y}3*\textrm{v}0, y1~(4)*v0, y1*y3^(2)*v0, y1^(3)*y3*v0, y3^(3)*v0
y1^(2)*y3^(2)*v0, y1*y3^(3)*v0, y3^(4)*v0]
gap> BasisVecs(S);
[y1*v0, y3*v0, y1*y3*v0, y1^ (3)*v0, y1*y3^(2)*v0, y1^(2)*y3*v0, y3^(3)*v0,
y1^(3)*y3*v0, y1*y3^(3)*v0]
gap> BasisVecs(Q);
[1*v0, y1^(2)*v0, y3^(2)*v0, y1~
gap> BasisVecs(T);
[y1^(2)*v0, y3^(2)*v0, y1^(2)*y3^(2)*v0]

```

\subsection*{2.3.2 Character}
\(\triangleright \operatorname{Character}(Q) \quad\) (attribute)
\(\triangleright \operatorname{Character}(S) \quad\) (attribute)
\(\triangleright\) Character \((T) \quad\) (attribute)
\(\triangleright\) Character (V)
(attribute)
Returns: a list

This function returns the character (as a list of weights and their multiplicities) of the given module.
```

gap> Character(V);
[[4, 0], 1, [2, 1], 1, [3, -1], 1, [0, 2], 1, [1, 0], 1,
[-2, 3], 1, [2, -2], 1, [-1, 1], 1, [-4, 4], 1, [0, -1], 1,
[-3, 2], 1, [1, -3], 1, [-2, 0], 1, [-1, -2], 1, [0, -4], 1]
gap> Character(Q);
[[4, 0], 1, [0, 2], 1, [2, -2], 1, [-4, 4], 1, [-2, 0], 1,
[0, -4], 1]
gap> Character(S);
[[2, 1], 1, [3, -1], 1, [1, 0], 1, [-2, 3], 1, [0, -1], 1,
[-1, 1], 1, [1, -3], 1, [-3, 2], 1, [-1, -2], 1]
gap> Character(T);
[[0, 2], 1, [2, -2], 1, [-2, 0], 1]

```

\subsection*{2.3.3 DecompositionNumbers}
```

\triangleright ~ D e c o m p o s i t i o n N u m b e r s (Q) ~ (a t t r i b u t e) ~
D DecompositionNumbers(S)
D DecompositionNumbers(T)
D DecompositionNumbers(V)

```
(attribute)
(attribute)
(attribute)

Returns: a list
Returns a list of highest weights of simple composition factors (in the underlying characteristic) and their corresponding multiplicities in the given module.
```

gap> DecompositionNumbers(V);
[[4, 0], 1, [2, 1], 1, [0, 2], 1]
gap> DecompositionNumbers(Q);
[[4, 0], 1, [0, 2], 1]
gap> DecompositionNumbers(S);
[[2, 1], 1]
gap> DecompositionNumbers(T);
[[0, 2], 1]

```

\subsection*{2.3.4 Dim}
\begin{tabular}{ll}
\(\triangleright \operatorname{Dim}(Q)\) & (attribute) \\
\(\triangleright \operatorname{Dim}(S)\) & (attribute) \\
\(\triangleright \operatorname{Dim}(T)\) & (attribute) \\
\(\triangleright \operatorname{Dim}(V)\) & (attribute)
\end{tabular}

Returns: an integer (the dimension of the module)
```

gap> Dim(V);
15
gap> Dim(Q);
6
gap> Dim(S);
9
gap> Dim(T);
3

```

\subsection*{2.3.5 DominantWeights}
\(\triangleright\) DominantWeights \((Q) \quad\) (attribute)
\(\triangleright\) DominantWeights \((S)\)
\(\triangleright\) DominantWeights \((T)\)
- DominantWeights (V)

Returns: a list
This function lists the dominant weights occurring in the given module (with nonzero multiplicity). The multiplicities are not given.
```

gap> DominantWeights(V);
[[4, 0], [2, 1], [0, 2], [1, 0]]
gap> DominantWeights(Q);
[[4, 0], [0, 2]]
gap> DominantWeights(S);
[[2, 1], [1, 0]]
gap> DominantWeights(T);
[[0, 2]]

```

\subsection*{2.3.6 DominantWeightSpaces}
\(\triangleright\) DominantWeightSpaces \((Q)\) (attribute)
\(\triangleright\) DominantWeightSpaces \((S)\) (attribute)
\(\triangleright\) DominantWeightSpaces \((T)\) (attribute)
\(\triangleright\) DominantWeightSpaces (V) (attribute)
Returns: a list
The output of this function is a list consisting of a weight followed by a list of basis vectors for the corresponding weight space.
```

gap> DominantWeightSpaces(V);
[[4, 0], [1*v0], [2, 1], [y1*v0], [0, 2], [y1^(2)*v0], [1, 0],
[y1*y3*v0]]
gap> DominantWeightSpaces(Q);
[[4, 0], [1*v0], [0, 2], [y1^(2)*v0]]
gap> DominantWeightSpaces(S);
[[2, 1], [y1*v0], [1, 0], [y1*y3*v0]]
gap> DominantWeightSpaces(T);
[[0, 2], [y1^(2)*v0]]

```

\subsection*{2.3.7 Weights}
```

\triangleright Weights(Q) (attribute)

```


```

\triangleright Weights(V)
(attribute)

```

Returns: a list
Lists the weights in the given module.
```

 [-1, 1], [-4, 4], [0, -1], [-3, 2], [1, -3], [-2, 0],
 [-1, -2], [0, -4]]
 gap> Weights(Q);
 [[4, 0], [0, 2], [2, -2], [-4, 4], [-2, 0], [0, -4]]
 gap> Weights(S);
 [[2, 1], [3, -1], [1, 0], [-2, 3], [0, -1], [-1, 1], [1, -3],
 [-3, 2], [-1, -2]]
 gap> Weights(T);
 [[0, 2], [2, -2], [-2, 0]]
    ```

\subsection*{2.3.8 WeightSpaces}
\(\triangleright\) WeightSpaces(Q) (attribute)
\(\triangleright\) WeightSpaces \((S) \quad\) (attribute)
\(\triangleright\) WeightSpaces \((T)\) (attribute)
\(\triangleright\) WeightSpaces \((V) \quad\) (attribute)
Returns: a list
Computes a list consisting of weights followed by a basis of their corresponding weight spaces, for each weight of the given module.
```

gap> WeightSpaces(V);
[[4, 0], [1*v0], [2, 1], [y1*v0], [3, -1], [y3*v0], [0, 2],
[y1^(2)*v0], [1, 0], [y1*y3*v0], [-2, 3], [y1^(3)*v0], [2, -2],
[y3^(2)*v0], [-1, 1], [y1^(2)*y3*v0], [-4, 4], [y1^(4)*v0],
[0, -1], [y1*y3^(2)*v0], [-3, 2], [y1^(3)*y3*v0], [1, -3],
[y3^(3)*v0], [-2, 0], [y1^(2)*y3^(2)*v0], [-1, -2],
[y1*y3^(3)*v0], [0, -4], [y3^(4)*v0]]
gap> WeightSpaces(Q);
[[4, 0], [1*v0], [0, 2], [y1^(2)*v0], [2, -2], [y3^(2)*v0],
[-4, 4], [y1^(4)*v0], [-2, 0], [y1^(2)*y3^(2)*v0], [0, -4],
[y3^(4)*v0]]
gap> WeightSpaces(S);
[[2, 1], [y1*v0], [3, -1], [y3*v0], [1, 0], [y1*y3*v0],
[-2, 3], [y1^(3)*v0], [0, -1], [y1*y3^(2)*v0], [-1, 1],
[y1^(2)*y3*v0], [1, -3], [y3^(3)*v0], [-3, 2], [y1^(3)*y3*v0],
[-1, -2], [y1*y3^(3)*v0]]
gap> WeightSpaces(T);
[[0, 2], [y1^(2)*v0], [2, -2], [y3^(2)*v0], [-2, 0],
[y1^(2)*y3^(2)*v0]]

```

\subsection*{2.3.9 WeightSpace}
```

\triangleright WeightSpace(Q, wt) (operation)
\triangleright WeightSpace(S, wt)
\triangleright WeightSpace(T, wt)
WeightSpace(V, wt)

```
(operation)
(operation)
(operation)

Returns: a list
Gives a basis for the weight space of the given weight wt.
```

gap> WeightSpace(V, [2,1]);
[y1*v0]
gap> WeightSpace(Q, [2,1]);
[]
gap> WeightSpace(S, [2,1]);
[y1*v0]
gap> WeightSpace(T, [2,-2]);
[y3^(2)*v0]

```

\subsection*{2.3.10 TheCharacteristic}
\(\triangleright\) TheCharacteristic \((Q)\) (operation)
\(\triangleright\) TheCharacteristic (S)
\(\triangleright\) TheCharacteristic (T)
- TheCharacteristic (V)

Returns: an integer
Gives the characteristic of the base field.
Example
```

gap> TheCharacteristic(V);
2
gap> TheCharacteristic(Q);
2
gap> TheCharacteristic(S);
2
gap> TheCharacteristic(T);
2

```

\subsection*{2.3.11 TheLieAlgebra}
\(\triangleright\) TheLieAlgebra(Q) (attribute)
\(\triangleright\) TheLieAlgebra(S) (attribute)
\(\triangleright\) TheLieAlgebra (T)
\(\triangleright\) TheLieAlgebra(V)
Returns: a Lie algebra
Gives the underlying Lie algebra for the given module.
```

gap> TheLieAlgebra(V);
<Lie algebra of dimension 8 over Rationals>
gap> TheLieAlgebra(Q);
<Lie algebra of dimension 8 over Rationals>
gap> TheLieAlgebra(S);
<Lie algebra of dimension 8 over Rationals>
gap> TheLieAlgebra(T);
<Lie algebra of dimension 8 over Rationals>

```

The GAP manual gives additional operations for various properties and attributes of such Lie algebras and their enveloping algebras.

\subsection*{2.4 Operations common to Weyl modules, submodules, and quotients}

In the following, \(Q\) is a quotient Weyl module, \(S\) is a submodule, and \(V\) is a Weyl module.

\subsection*{2.4.1 MaximalVectors}
```

\triangleright MaximalVectors(Q, wt) (operation)
\triangleright MaximalVectors(Q) (attribute)
\triangleright ~ M a x i m a l V e c t o r s (S , ~ w t) ~ (o p e r a t i o n))
\ MaximalVectors(S) (attribute)
\triangleright ~ M a x i m a l V e c t o r s (V , ~ w t) ~ (o p e r a t i o n))
\ MaximalVectors(V) (attribute)

```

Returns: a list
Returns a list of linearly independent maximal vectors for the given dominant weight wt or for all dominant weights of the module. The maximal vectors of a particular weight form a basis of the space of maximal vectors of that weight.

In the following example, we assume that \(V, Q\), and \(S\) are the same modules as defined in the example at the beginning of Section 2.3.
```

gap> MaximalVectors(V);
[1*v0, y1*v0]
gap> m:= MaximalVectors(V);
[1*v0, y1*v0]
gap> List(m, Weight);
[[4, 0]], [2, 1]]
gap> MaximalVectors(V, [2,1]);
[y1*v0]
gap> m:= MaximalVectors(Q);
[1*v0, y1^(2)*v0]
gap> List(m, Weight);
[[4, 0]], [0, 2]]
gap> MaximalVectors(Q, [0,2]);
[y1~(2)*v0]
gap> m:= MaximalVectors(S);
[y1*v0]
gap> List(m, Weight);
[[2, 1]]
gap> MaximalVectors(S, [2,1]);
[y1*v0]

```

\subsection*{2.4.2 IsAmbiguous}
```

\triangleright IsAmbiguous(Q)
(attribute)
| IsAmbiguous(S)
(attribute)
\triangleright IsAmbiguous(V)
(attribute)

```

Returns: true or false
The module is ambiguous if it has two or more linearly independent maximal vectors of the same weight.
```

gap> V:= WeylModule(2, [3,0], "G", 2);
V[3, 0]
gap> IsAmbiguous(V);
true

```

\subsection*{2.4.3 AmbiguousMaxVecs}
```

\triangleright AmbiguousMaxVecs(Q) (attribute)
\triangleright AmbiguousMaxVecs(S) (attribute)
\triangleright AmbiguousMaxVecs(V) (attribute)

```
Returns: a list

This function lists a basis for the subspace of ambiguous maximal vectors.
```

gap> V:= WeylModule(2, [3,0], "G", 2);
V[3, 0]
gap> AmbiguousMaxVecs(V);
[y1*y3*v0, y4*v0]

```

\subsection*{2.5 Operations on Weyl modules and their quotients}

In the following, \(Q\) is a quotient Weyl module and \(V\) is a Weyl module.

\subsection*{2.5.1 ActOn}
```

\triangleright ActOn(Q, u, v) (operation)
\triangleright ActOn(V, u, v)
(operation)

```

Returns: An element of the Weyl module or quotient
This function returns the result of acting by the hyperalgebra element \(u\) on the given vector \(v\). Here \(v\) must be an element of the given Weyl module \(V\) or quotient Weyl module \(Q\). The command LatticeGeneratorsInUEA is a pre-existing GAP command; see the chapter on Lie algebras in the GAP reference manual for further details. The lattice generators are regarded as standard generators of the hyperalgebra for computing the action.
```

gap> V:= WeylModule(2, [1,0], "G", 2);
V[1, 0]
gap> L:= TheLieAlgebra(V);
<Lie algebra of dimension 14 over Rationals>
gap> g:= LatticeGeneratorsInUEA(L);
[y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, (h13/1), (h14/1)]
gap> b:= BasisVecs(V);
[1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0]
gap> ActOn(V, g[1]^2 + g[7], b[1]);
0*v0
gap> ActOn(v, g[1]*g[6], b[1]);
y1*y6*v0

```

\subsection*{2.5.2 Generator}
\(\triangleright\) Generator (Q)
\(\triangleright\) Generator (V)
Returns: a highest weight vector
This returns a generating vector of the given module.
```

gap> V:= WeylModule(2, [3,0], "G", 2);
V[3, 0]
gap> Generator(V);
1*v0

```

\subsection*{2.5.3 GensSocleLayers}
```

\triangleright GensSocleLayers(Q)
(attribute)
\triangleright GensSocleLayers(V)
(attribute)

```

Returns: a list
Returns a list of lists, such that the \(i\) th list gives a list of generators of the \(i\) th module in the socle series of the input.

Example
```

gap> V:= WeylModule(2, [3,0],"G",2);
V[3, 0]
gap> GensSocleLayers(V);
[[y 1*y4*v0, y1*y3*y4*v0+y 1*y6*v0+y3*y5*v0,
y1*y4*y6*v0+y3*y4*y5*v0+y4^(3)*v0], [y4*v0, y1^(2)*y3*y6*v0],
[y1*y3*v0], [y5*y6*v0], [y1*y6*v0+y4^(2)*v0], [1*v0]]

```

\subsection*{2.5.4 PrintSocleLayers}
```

\triangleright PrintSocleLayers(Q) (operation)

```
\(\triangleright\) PrintSocleLayers(V)

Returns: nothing
Prints the weights of the generators of the socle layers corresponding to the output of the previous command. These are the highest weights of the simple composition factors in each socle layer.

In the following example, we assume that \(V\) is the same Weyl module defined in the preceding example.
```

gap> PrintSocleLayers(V);
Printing highest weights of simples in socle layers of V[3, 0]
Layer 1: [[0, 1], [1, 0], [0, 0]]
Layer 2: [[2, 0], [0, 0]]
Layer 3: [[2, 0]]
Layer 4: [[0, 0]]
Layer 5: [[1, 0]]
Layer 6: [[3, 0]]

```

\subsection*{2.5.5 SocleSeries}
```

\triangleright SocleSeries(Q)
\triangleright SocleSeries(V)
(attribute)

```

Returns: a list
Returns the socle series of its input module, as a list of submodules.
```

gap> V:= WeylModule(2, [3,0], "G", 2);
V[3, 0]
gap> SocleSeries(V);
[21-dimensional submod of V[3, 0], 28-dimensional submod of V[3, 0],
34-dimensional submod of V[3, 0], 35-dimensional submod of V [3, 0],
41-dimensional submod of V[3, 0], 77-dimensional submod of V [3, 0]]

```

\subsection*{2.5.6 SocleWeyl}
```

\triangleright SocleWeyl(V)
(attribute)
\triangleright SocleWeyl(Q)
Returns: a submodule
This function returns the socle of the given module.

```
```

gap> V:= WeylModule(2, [3,0], "G", 2);

```
gap> V:= WeylModule(2, [3,0], "G", 2);
V[ 3, 0 ]
V[ 3, 0 ]
gap> SocleWeyl(V);
gap> SocleWeyl(V);
21-dimensional submod of V[ 3, 0 ]
```

21-dimensional submod of V[3, 0]

```

\subsection*{2.6 Operations on Weyl modules}

This section documents additional operations that can be applied to an existing Weyl module \(V\).

\subsection*{2.6.1 MaximalSubmodule}
\(\triangleright\) MaximalSubmodule (V)
(attribute)
Returns: a submodule
Calculates and returns the unique maximal submodule of the given Weyl module \(V\).
```

gap> V:= WeylModule(3,[3,0],"A", 2);
V[3, 0]
gap> MaximalSubmodule(V);
7-dimensional submod of V[3, 0]

```

\subsection*{2.6.2 SimpleQuotient}
\(\triangleright\) SimpleQuotient (V)
(attribute)
Returns: a quotient Weyl module
Calculates and returns the simple quotient by the unique maximal submodule of the given Weyl module.
```

gap> V:= WeylModule(3,[3,0],"A", 2);
V[3, 0]
gap> Q:= SimpleQuotient(V);
3-dimensional quotient of V[3, 0]

```

\subsection*{2.7 Operations on quotients}

In the following, \(Q\) is a quotient Weyl module.

\subsection*{2.7.1 AmbientWeylModule}

\section*{\(\triangleright\) AmbientWeylModule (Q)}
(operation)
Returns: a Weyl module
This returns the ambient Weyl module V corresponding to the given quotient Q .
In the following example, we assume that \(Q\) is the same as the quotient module defined in the preceding example.

Example
gap> AmbientWeylModule(Q);
\(\mathrm{V}[3,0]\)

\subsection*{2.7.2 DefiningKernel}

\section*{\(\triangleright\) DefiningKernel(Q)}
(operation)
Returns: a submodule
This returns the kernel corresponding to the given quotient \(Q\). In other words, it returns the submodule \(S\) such that \(Q\) is isomorphic to \(V / S\), where \(V\) is the ambient Weyl module.

In the following example, we assume that \(Q\) is the same as the quotient module in the preceding example.

Example
gap> DefiningKernel(Q);
7-dimensional submod of \(\mathrm{V}[3,0\) ]

\subsection*{2.8 Operations on submodules}

In the following, \(S\) is a submodule.

\subsection*{2.8.1 AmbientWeylModule}
\(\triangleright\) AmbientWeylModule (S)
(operation)
Returns: a Weyl module
This function returns the ambient Weyl module containing the given submodule \(S\).
```

gap> V:= WeylModule(3,[3,0],"A",2);
V[3, 0]
gap> S:= MaximalSubmodule(V);
7-dimensional submod of V[3, 0]

```
```

gap> AmbientWeylModule(S);

```
V[3, 0 ]

\subsection*{2.8.2 Generators}

\section*{\(\triangleright\) Generators (S)}
(operation)
Returns: a list
Returns a list of generators of the given submodule \(S\). In the following example, we assume that \(S\) is the same as in the preceding example.
```

Example

```
```

gap> Generators(S);

```
[ y1*v0 ]

\subsection*{2.8.3 IsWithin}
```

\triangleright IsWithin(S, v)

```
(operation)
Returns: true or false
This function returns true if and only if the given vector \(v\) lies in the given submodule \(S\).
```

gap> V:= WeylModule(3,[3,0],"A", 2);
V[3, 0]
gap> S:= MaximalSubmodule(V);
7-dimensional submod of V[3, 0]
gap> g:= Generators(S);
[y1*v0]
gap> IsWithin(S, g[1]);
true

```

\subsection*{2.8.4 NextSocle}
\(\triangleright\) NextSocle (S)
(operation)
Returns: a SubWeylModule
This function returns the maximal submodule \(T\) containing the given submodule \(S\) such that \(T / S\) is semisimple. If \(S\) happens to be an element of the socle series then the function returns the next element in the socle series.

Example
```

gap> W:= WeylModule(2, [3,0],"G",2);
v[3, 0]
gap> g:= Generators(SocleWeyl(W));
[y1*y4*v0, y1*y3*y4*v0+y1*y6*v0+y3*y5*v0, y1*y4*y6*v0+y3*y4*y5*v0+y4^(3)*v0]
gap> S:= SubWeylModule(W, g[1]);
14-dimensional submod of V[3, O]
gap> T:= NextSocle(S);
21-dimensional submod of V[3, 0]
gap> DecompositionNumbers(T);
[[0, 1], 1, [1, 0], 1, [0, 0], 1]

```

In the above example, \(S\) is a simple submodule of the socle, and NextSocle (S) computes an extension of it by two simples.

\subsection*{2.8.5 GensNextSocle}

\section*{\(\triangleright\) GensNextSocle(S)}

Returns: a list
This function returns a list of generators of the submodule returned by NextSocle(S). In the example below, \(S\) is the submodule constructed in the preceding example.
```

gap> g:= GensNextSocle(S);
[y1*y6*v0+y3*y5*v0, y4^(3)*v0]
gap> List(g, Weight);
[[1, 0], [0, 0]]

```

\subsection*{2.8.6 SocleLengthTwoQuotient}
\(\triangleright\) SocleLengthTwoQuotient (S)
(attribute)

\section*{Returns: a QuotientWeylModule}

This function returns a quotient of the ambient Weyl module \(V\) with socle series length at most two such that \(S\) lies in its defining kernel.
```

gap> W:= WeylModule(2, [3,0], "G", 2);
V[3, 0]
gap> ss:= SocleSeries(W);
[21-dimensional submod of V[3, 0], 28-dimensional submod of V [3, 0],
34-dimensional submod of V[3, 0], 35-dimensional submod of V [3, 0],
41-dimensional submod of V[3, 0], 77-dimensional submod of V [3, 0]]
gap> amv:= AmbiguousMaxVecs(W);
[y1*y3*v0, y4*v0]
gap> Q1:= SocleLengthTwoQuotient(ss[4]);
42-dimensional quotient of V[3, 0]
gap> PrintSocleLayers(Q1);
Printing highest weights of simples in socle layers of
42-dimensional quotient of V[3, 0]
Layer 1: [[1, 0]]
Layer 2: [[3, 0]]
gap> Q2:= SocleLengthTwoQuotient(SubWeylModule(W,amv[1]+amv[2]));
48-dimensional quotient of V[3, 0]
gap> PrintSocleLayers(Q2);
Printing highest weights of simples in socle layers of
48-dimensional quotient of V[3, 0]
Layer 1: [[2, 0], [1, 0]]
Layer 2: [[3, 0]]

```

Here we see an example of an ambiguous Weyl module with different quotients of socle length two.

\subsection*{2.8.7 TwoFactorQuotientsContaining}

\section*{\(\triangleright\) TwoFactorQuotientsContaining(S)}

Returns: a list of QuotientWeylModules
This returns a list of quotients of the ambient Weyl module, each having exactly two composition factors, each of which contain \(S\) in their defining kernel. Such quotients realize non-split extensions
of the simple top composition factor of \(V\). NOTE. Even when \(S\) is the trivial module, we do not claim that the output will give all of the extensions.

In the following example, we assume that \(W\), amv are as defined in the preceding example.
Example
```

gap> Q:= TwoFactorQuotientsContaining(SubWeylModule(W,amv[1]+amv[2]));
[42-dimensional quotient of V[3, 0], 42-dimensional quotient of V[3, 0]]
gap> PrintSocleLayers(Q[1]);
Printing highest weights of simples in socle layers of
42-dimensional quotient of v[3, 0]
Layer 1: [[1, 0]]
Layer 2: [[3, 0]]
gap> PrintSocleLayers(Q[2]);
Printing highest weights of simples in socle layers of
42-dimensional quotient of v[3, 0]
Layer 1: [[2, 0]]
Layer 2: [[3, 0]]

```

Here we see that the ambient Weyl module has at least two non-isomorphic extensions realized in its second radical. Comparing with information from an earlier example (see PrintSocleLayers (2.5.4)) reveals that the Weyl module in question is non-rigid (its socle and radical series do not coincide).

\subsection*{2.9 Operations on subquotients}

In the following, \(T\) is a subquotient.

\subsection*{2.9.1 AmbientQuotient}
\(\triangleright\) AmbientQuotient ( \(T\) )
(operation)
Returns: a QuotientWeylModule
This function returns the ambient quotient Weyl module containing the given subquotient \(T\).
Example
```

gap> W:= WeylModule(2, [3,0], "G", 2);
V[3, 0]
gap> m:= AmbiguousMaxVecs(W); List(m, Weight);
[y1*y3*v0, y4*v0]
[[2, 0], [2, 0]]
gap> Q:= QuotientWeylModule(SubWeylModule(W,m[1]));
64-dimensional quotient of V[3, 0]
gap> subQ:= SubWeylModule(Q, m[2]);
21-dimensional submod of 64-dimensional quotient of V [3, 0]
gap> AmbientQuotient(subQ);
64-dimensional quotient of V[3, 0]

```

\subsection*{2.9.2 Generators}
```

\trianglerightGenerators(T)

```

This returns a list of generators for the given subquotient \(T\). In the next example, we assume that subQ is the subquotient constructed in the example for the AmbientQuotient (2.9.1) command, documented above.
```

gap> Generators(subQ);

```
[ y \(4 * \mathrm{v} 0\) ]

\subsection*{2.9.3 IsWithin}

\section*{\(\triangleright\) IsWithin( \(T, ~ v\) )}
(operation)
Returns: true or false
This returns true if and only if the image of the given vector \(v\) (under the quotient map from the ambient Weyl module to the ambient quotient) lies in the given subquotient \(T\). In the next example, we assume that subQ, \(Q\), and \(m\) are as defined in the example for AmbientQuotient (2.9.1) above.
```

gap> IsWithin(subQ,m[2]);
true
gap> IsWithin(subQ, Generator(Q));
false

```

\subsection*{2.9.4 NextSocle}
\(\triangleright\) NextSocle (T)
(operation)
Returns: a SubQuotientWeylModule
This function returns the maximal subquotient \(T\) containing the given subquotient \(S\) such that \(T / S\) is semisimple. If \(S\) happens to be an element of the socle series then the function returns the next element in the socle series.

In the next example, we assume that subQ is the subquotient constructed in the example for the AmbientQuotient (2.9.1) command, documented above.
```

gap> DecompositionNumbers(subQ);
[[2, 0], 1, [0, 1], 1, [0, 0], 1]
gap> N:= NextSocle(subQ);
22-dimensional submod of 64-dimensional quotient of V[3, 0]
gap> DecompositionNumbers(N);
[[2, 0], 1, [0, 1], 1, [0, 0], 2]

```

\section*{Chapter 3}

\section*{Weights and Characters}

This chapter documents additional functions available for computation of weights and characters.

\subsection*{3.1 Weights}

\subsection*{3.1.1 Weight (for IsLeftAlgebraModuleElement)}
\(\triangleright\) Weight (elt)
Returns: a list of integers
The weight of the given element elt is calculated and returned.
```

gap> V:= WeylModule(3, [3,3], "A",2);
V[3, 3]
gap> m:= MaximalVectors(V);
[1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,
y1*y2*y3*v0+y1^(2)*y2^(2)*v0]
gap> Weight(m[2]);
[1, 4]
gap> List(m,Weight);
[[3, 3], [1, 4], [4, 1], [0, 3], [3, 0], [1, 1]]

```

NOTE. The above trick of applying the Weight function across an entire list lst of vectors, with the command List (lst, Weight), is very useful in many situations. This capability is built in to the List function in GAP.

\subsection*{3.2 Characters}

We have already seen the function Character (2.3.2), that computes the (formal) character of a given Weyl module, quotient, submodule, or subquotient. We now consider some additional functions for computing characters.

\subsection*{3.2.1 DecomposeCharacter}

Returns: a list (of simple highest weights and their multiplicities)

If \(c h\) is a given character (of some module) then this function computes the multiplicities of the simple characters in \(c h\), thus obtaining the decomposition numbers of the module. Here it is necessary to specify the characteristic \(p\) and root system (of type typ and rank \(r k\) ) for the simple characters. For instance, this can be used to decompose tensor products.
```

gap> V:= WeylModule(2, [2,0], "A",2);
v[2, 0]
gap> ch:= ProductCharacter(Character(V),Character(V));
[[4, 0], 1, [2, 1], 2, [3, -1], 2, [0, 2], 3, [1, 0], 4,
[2, -2], 3, [-2, 3], 2, [-1, 1], 4, [0, -1], 4, [1, -3], 2,
[-4, 4], 1, [-3, 2], 2, [-2, 0], 3, [-1, -2], 2, [0, -4], 1]
gap> DecomposeCharacter(ch,2,"A",2);
[[4, 0], 1, [2, 1], 2, [0, 2], 3, [1, 0], 2]

```

\subsection*{3.2.2 DifferenceCharacter}
```

D DifferenceCharacter(ch1, ch2)

```
(operation)

\section*{Returns: a list (a character)}

If ch1 and ch2 are given characters, this function returns their formal difference character. It is used in the definition of the DecomposeCharacter function.
```

gap> DifferenceCharacter(Character(V),Character(V));
[]

```

The empty list here implements the zero character.

\subsection*{3.2.3 ProductCharacter}
```

\triangleright ProductCharacter(ch1, ch2)

```
(operation)
Returns: a list (a character)
Returns the product character of its inputs ch1 and ch2. If ch1 and ch2 are characters of modules then the output of this function is the character of the tensor product of the modules.
```

gap> V:= WeylModule(2, [2,0],"A",2);
V[2, 0]
gap> ch:= ProductCharacter(Character(V),Character(V));
[[4, 0], 1, [2, 1], 2, [3, -1], 2, [0, 2], 3, [1, 0], 4,
[2, -2], 3, [-2, 3], 2, [-1, 1], 4, [0, -1], 4, [1, -3], 2,
[-4, 4], 1, [-3, 2], 2, [-2, 0], 3, [-1, -2], 2, [0, -4], 1]

```

By applying the function DecomposeCharacter (3.2.1) we can decompose tensor products in positive characteristic.

\subsection*{3.2.4 SimpleCharacter}
\(\triangleright\) SimpleCharacter ( \(p\), wt, typ, rk)
(operation)
Returns: a list (a character)
Computes the simple character of highest weight wt in characteristic \(p\). The arguments typ and rk specify the type and rank of the underlying root system. The function uses Steinberg's tensor product theorem.

Example
```

gap> SimpleCharacter(2,[2,0],"A",2);
[[2, 0], 1, [-2, 2], 1, [0, -2], 1]

```

Another way to compute the same result is to compute the Character of the output of SimpleQuotient(V), where V is the WeylModule in the same characteristic and root system with the same highest weight.

Example
```

gap> V:= WeylModule(2,[2,0],"A",2);
V[2, 0]
gap> Character(SimpleQuotient(V));
[[2, 0], 1, [-2, 2], 1, [0, -2], 1]

```

\section*{Chapter 4}

\section*{Schur Algebras}

The decomposition numbers for the algebraic group \(S L_{n}\) of type \(A_{n-1}\) determine the decomposition numbers for the corresponding Schur algebras, and thus also determine the decomposition numbers for symmetric groups. People working with Schur algebras and symmetric groups often prefer to use partitions to label highest weights. Although it is trivial to convert between \(S L_{n}\) weight notation and partition notation, for the sake of convenience, we provide a few functions that perform such conversions, and various other functions related to Schur algebras and symmetric groups.

NOTE. The SymmetricGroupDecompositionMatrix (4.2.3) function for symmetric group decomposition numbers is quite slow, so readers interested in symmetric group computations may want to look elsewhere for more effcient tools.

\subsection*{4.1 Constructor and filter}

Weyl modules for a Schur algebra are constructed by the following.

\subsection*{4.1.1 SchurAlgebraWeylModule}
\(\triangleright\) SchurAlgebraWeylModule ( \(p, p t n\) )
Returns: a Weyl module
This function creates and returns a Weyl module of highest weight defined by the given partition \(p t n\). The length of the partition, which may be padded by zeros as necessary, defines the underlying \(G L_{n}\) and the Schur algebra degree.

Example
```

gap> V:= SchurAlgebraWeylModule(3,[1,1,0]);
Schur algebra module V [1, 1, 0]

```

Here we define the Weyl module for \(G L_{3}\) of highest weight \([1,1]\) in the partition notation.

\subsection*{4.1.2 IsSchurAlgebraWeylModule}
\(\triangleright\) IsSchurAlgebraWeylModule (V)
(filter)
Returns: true or false
Returns true if and only if the given \(V\) is a Schur algebra Weyl module.

\subsection*{4.2 Decomposition matrices}

Decomposition matrices for Schur algebras and symmteric groups in positive characteristic can be computed.

\subsection*{4.2.1 SchurAlgebraDecompositionMatrix}
\(\triangleright\) SchurAlgebraDecompositionMatrix ( \(p, n, r\) )
(operation)

\section*{Returns: a matrix}

Returns the decomposition matrix for the Schur algebra \(S(n, r)\) in characteristc \(p\). The rows and columns of the matrix are indexed by the partitions produced by BoundedPartitions ( \(n, r\) ) ordered the same as in the output of that function.

Example
gap> SchurAlgebraDecompositionMatrix (3,4,3);
[ [ 1, 1, 0], [ 0, 1, 1], [ 0, 0, 1] ]

Here we compute the decomposition matrix for \(S(4,3)\) in characteristic 3 . The rows and columns of the matrix are indexed by the following partitions:

Example
gap> BoundedPartitions \((4,3)\);
\([[3,0,0,0],[2,1,0,0],[1,1,1,0]]\)

\subsection*{4.2.2 SymmetricGroupDecompositionNumbers}
```

\triangleright SymmetricGroupDecompositionNumbers(p, ptn)

```
(operation)

\section*{Returns: a list}

Returns the decomposition numbers of the dual Specht module indexed by the given partition \(p t n\) in characteristic \(p\).

Example
```

gap> SymmetricGroupDecompositionNumbers(2,[2,1,1]);
[[2, 1, 1], 1, [1, 1, 1, 1], 1]

```

\subsection*{4.2.3 SymmetricGroupDecompositionMatrix}
```

\ SymmetricGroupDecompositionMatrix(p, n)

```
(operation)

\section*{Returns: a matrix}

Returns the decomposition matrix for the symmetric group on \(n\) letters in characteristc \(p\). The rows of the matrix are labeled by the partitions of \(n\) in the order produced by AllPartitions ( \(n\) ), and the columns are labeled by the \(p\)-restricted partitions of \(n\). NOTE. GAP has a built-in Partitions function that also gives all the partitions of \(n\), but the ordering is different.

\section*{Example}
```

gap> SymmetricGroupDecompositionMatrix(2,4);
[[0, 1], [1, 1], [1, 0], [1, 1], [0, 1]]
gap> AllPartitions(4);
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
gap> pRestrictedPartitions(2,4);
[[2, 1, 1], [1, 1, 1, 1]]

```

\subsection*{4.3 Partitions}

This section documents a number of functions for converting between weights and partitions (in type A) as well as other related functions.

\subsection*{4.3.1 CompositionToWeight}
- CompositionToWeight (mu)
(operation)
Returns: a list (a weight)
This converts the given composition \(m u\) into a weight by taking successive differences of its parts.
Example
gap> CompositionToWeight([1, 2, 0, 1]);
[ \(-1,2,-1]\)

\subsection*{4.3.2 WeightToComposition}
\(\triangleright\) WeightToComposition(r, wt)
(operation)
Returns: a list (a composition) or fail
This converts the given weight wt into a composition of degree \(r\). Without degree information, this function is ill defined. Returns fail if the operation is impossible.

Example
```

gap> WeightToComposition(4,[-1, 2, -1]);
[1, 2, 0, 1]
gap> WeightToComposition(8,[-1, 2, -1]);
[2, 3, 1, 2]
gap> WeightToComposition(6,[-1, 2, -1]);
fail

```

\subsection*{4.3.3 AllPartitions}
\(\triangleright\) AllPartitions ( \(n\) )
Returns: a list of partitions
Lists all the partitions of \(n\). Note that GAP has a built-in Partitions function that also gives all the partitions of \(n\), but with a different ordering

\section*{Example}
```

gap> AllPartitions(5);
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],
[1, 1, 1, 1, 1]]

```

\subsection*{4.3.4 BoundedPartitions}
```

\triangleright ~ B o u n d e d P a r t i t i o n s (n , ~ r , ~ s) ~ (o p e r a t i o n))

```
\(\triangleright\) BoundedPartitions \((n, r)\)

Returns: a list of partitions
Returns a list of \(n\) part partitions of degree \(r\) such that each part lies in the closed interval \([0, s]\). The second form returns a list of \(n\) part partitions of degree \(r\). Note that BoundedPartitions ( \(n, r\) ) is equivalent to BoundedPartitions ( \(n, r, r\) ).
```

gap> BoundedPartitions(5,3,2);
[[2, 1, 0, 0, 0], [1, 1, 1, 0, 0]]
gap> BoundedPartitions(5,3,3);
[[3, 0, 0, 0, 0], [2, 1, 0, 0, 0], [1, 1, 1, 0, 0]]
gap> BoundedPartitions(5,3);
[[3, 0, 0, 0, 0], [2, 1, 0, 0, 0], [1, 1, 1, 0, 0]]

```

\subsection*{4.3.5 Conjugate}
\(\triangleright\) Conjugate (ptn)
(operation)
Returns: a list (a partition)
Returns the conjugate partition of \(p t n\).
Example
```

gap> Conjugate([4]);
[1, 1, 1, 1]
gap> Conjugate([2,1,1,1]);
[4, 1]

```

\subsection*{4.3.6 pRegular}
\(\triangleright\) pRegular ( \(p, p t n\) )
(operation)
Returns: true or false
Returns true if and only if the given partition \(p t n\) is \(p\)-regular.
```

gap> pRegular(3,[3,1,1]);
true
gap> pRegular(2, [3,1,1]);
false

```

\subsection*{4.3.7 pRegularPartitions}
\(\triangleright\) pRegularPartitions \((p, n)\)
Returns: a list
Returns a list of all \(p\)-regular partitions of \(n\).
```

gap> pRegularPartitions(3,5);
[[4, 1], [3, 1, 1], [5], [2, 2, 1], [3, 2]]
gap> pRegularPartitions(2,5);
[[3, 2], [4, 1], [5]]

```

\subsection*{4.3.8 pRestricted}
\(\triangleright\) pRestricted ( \(p\), ptn)
Returns: true or false
Returns true if and only if the given partition \(p t n\) is \(p\)-restricted.

Example
```

gap> pRestricted(3,[3,1,1]);
true
gap> pRestricted(2,[3,1]);
false

```

\subsection*{4.3.9 pRestrictedPartitions}
- pRestrictedPartitions ( \(p, n\) )
(operation)
Returns: a list
Returns a list of all \(p\)-restricted partitions of \(n\).
```

gap> pRestrictedPartitions(3,5);
[[3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]
gap> pRestrictedPartitions(2,5)
[[2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]

```

\subsection*{4.3.10 Mullineux}
\(\triangleright\) Mullineux ( \(p, m u\) )
(operation)
Returns: a list
Applies the Mullineux map to the partition \(m u\) in characteristic \(p\).
```

gap> Mullineux(2,[1,1,1]);
p-singular!
gap> Mullineux(2,[3]);
[3]
gap> Mullineux(3,[3]);
[2, 1]
gap> Mullineux(3,[2,1]);
[3]

```

\section*{References}
[BDM11] C. Bowman, S. R. Doty, and S. Martin. Decomposition of tensor products of modular irreducible representations for \(\mathrm{SL}_{3}\). Int. Electron. J. Algebra, 9:177-219, 2011. With an appendix by C. M. Ringel. 5
[BNPS20] Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen, and Paul Sobaje. Counterexamples to the tilting and ( \(p, r\) )-filtration conjectures. J. Reine Angew. Math., 767:193-202, 2020. 5
[CPS75] Edward Cline, Brian Parshall, and Leonard Scott. Cohomology of finite groups of Lie type. I. Inst. Hautes Études Sci. Publ. Math., (45):169-191, 1975. 6
[Irv86] Ronald S. Irving. The structure of certain highest weight modules for SL3. J. Algebra, 99(2):438-457, 1986. 4
[Jan03] Jens Carsten Jantzen. Representations of algebraic groups, volume 107 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2003. 4
[Xi99] Nanhua Xi. Maximal and primitive elements in Weyl modules for type \(A_{2}\). J. Algebra, 215(2):735-756, 1999. 4

\section*{Index}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
ActOn \\
for IsQuotientWeylModule,IsUEALatticeElement,IsLeftAlgebraM
\end{tabular} & for IsQuotientWeylModule, 10 for IsSubQuotientWeylModule, 10 dulebildskert,WeylModule, 10 \\
\hline 15 & for IsWeylModule, 10 \\
\hline for IsWeylModule, IsUEALatticeElement, IsLeftAlgebraModuleElement, 15 & DefiningKernel for IsQuotientWeylModule, 18 \\
\hline AllPartitions for IsInt, 28 & DifferenceCharacter for IsList,IsList, 24 \\
\hline AmbientQuotient for IsSubQuotientWeylModule, 21 & \[
\begin{aligned}
& \text { Dim } \\
& \text { for IsQuotientWeylModule, } 10
\end{aligned}
\] \\
\hline \begin{tabular}{l}
AmbientWeylModule \\
for IsQuotientWeylModule, 18 for IsSubWeylModule, 18
\end{tabular} & for IsSubQuotientWeylModule, 10 for IsSubWeylModule, 10 for IsWeylModule, 10 \\
\hline AmbiguousMaxVecs for IsQuotientWeylModule, 15 for IsSubWeylModule, 15 for IsWeylModule, 15 & \begin{tabular}{l}
DominantWeights \\
for IsQuotientWeylModule, 11 \\
for IsSubQuotientWeylModule, 11 \\
for IsSubWeylModule, 11 \\
for IsWeylModule, 11
\end{tabular} \\
\hline \begin{tabular}{l}
BasisVecs \\
for IsQuotientWeylModule, 9 \\
for IsSubQuotientWeylModule, 9 for IsSubWeylModule, 9 for IsWeylModule, 9
\end{tabular} & DominantWeightSpaces for IsQuotientWeylModule, 11 for IsSubQuotientWeylModule, 11 for IsSubWeylModule, 11 for IsWeylModule, 11 \\
\hline \begin{tabular}{l}
BoundedPartitions \\
for IsInt, IsInt, 28 \\
for IsInt, IsInt, IsInt, 28
\end{tabular} & Generator for IsQuotientWeylModule, 16 for IsWeylModule, 16 \\
\hline \begin{tabular}{l}
Character \\
for IsQuotientWeylModule, 9 \\
for IsSubQuotientWeylModule, 9 \\
for IsSubWeylModule, 9 \\
for IsWeylModule, 9
\end{tabular} & \begin{tabular}{l}
Generators \\
for IsSubQuotientWeylModule, 21 \\
for IsSubWeylModule, 19 \\
GensNextSocle \\
for IsSubWeylModule, 20
\end{tabular} \\
\hline ```
CompositionToWeight
    for IsList, 28
Conjugate
    for IsList, 29
``` & \begin{tabular}{l}
GensSocleLayers \\
for IsQuotientWeylModule, 16 for IsWeylModule, 16
\end{tabular} \\
\hline DecomposeCharacter for IsList, IsPosInt,IsString, IsPosInt, 23 DecompositionNumbers & IsAmbiguous for IsQuotientWeylModule, 14 for IsSubWeylModule, 14 \\
\hline
\end{tabular}
for IsWeylModule, 14
IsQuotientWeylModule
for CategoryCollections(IsLeftAlgebraModuleElement), 8

IsSchurAlgebraWeylModule
for IsWeylModule, 26
IsSubQuotientWeylModule
for tions(IsLeftAlgebraModuleElement), 8
IsSubWeylModule
for CategoryCollections(IsLeftAlgebraModuleElement), 8
IsWeylModule
for
CategoryCollections(IsLeftAlgebraModuleElement), 8
IsWithin
for IsSubQuotientWeylModule,IsLeftAlgebraModuleElement, 22
for IsSubWeylMod-
ule,IsLeftAlgebraModuleElement, 19

MaximalSubmodule
for IsWeylModule, 17
MaximalVectors
for IsQuotientWeylModule, 14
for IsQuotientWeylModule,IsList, 14
for IsSubWeylModule, 14
for IsSubWeylModule,IsList, 14
for IsWeylModule, 14
for IsWeylModule,IsList, 14
Mullineux
for IsPosInt, IsList, 30
NextSocle
for IsSubQuotientWeylModule, 22
for IsSubWeylModule, 19
pRegular
for IsPosInt, IsList, 29
pRegularPartitions
for IsPosInt, IsPosInt, 29
pRestricted
for IsPosInt, IsList, 29
pRestrictedPartitions
for IsInt, IsInt, 30
PrintSocleLayers
for IsQuotientWeylModule, 16
for IsWeylModule, 16
ProductCharacter
for IsList,IsList, 24
QuotientWeylModule for IsSubWeylModule, 7

SchurAlgebraDecompositionMatrix
for IsInt, IsInt, IsInt, 27
SchurAlgebraWeylModule
for IsInt, IsList, 26
SimpleCharacter
for IsPosInt, IsList, IsString, IsPosInt, 24
SimpleQuotient
for IsWeylModule, 17
SocleLengthTwoQuotient
for IsSubWeylModule, 20
SocleSeries
for IsQuotientWeylModule, 17
for IsWeylModule, 17
SocleWeyl
for IsQuotientWeylModule, 17
for IsWeylModule, 17
SubWeylModule
for IsQuotientWeylModule,IsLeftAlgebraModuleElement, 7
for IsQuotientWeylModule,IsList, 7
for IsSubQuotientWeylModule,IsLeftAlgebraModuleElement, 7
for IsSubQuotientWeylModule,IsList, 7
for
IsSubWeylModule,IsLeftAlgebraModuleElement, 7
for IsSubWeylModule,IsList, 7
for
IsWeylModule,IsLeftAlgebraModuleElement, 7
for IsWeylModule,IsList, 7
SubWeylModuleDirectSum
for IsQuotientWeylModule,IsList, 8 for IsWeylModule,IsList, 7
SymmetricGroupDecompositionMatrix for IsInt, IsInt, 27
SymmetricGroupDecompositionNumbers for IsInt, IsList, 27

TheCharacteristic
for IsQuotientWeylModule, 13
for IsSubQuotientWeylModule, 13
for IsSubWeylModule, 13
for IsWeylModule, 13
TheLieAlgebra
for IsQuotientWeylModule, 13
for IsSubQuotientWeylModule, 13
for IsSubWeylModule, 13
for IsWeylModule, 13
TwoFactorQuotientsContaining
for IsSubWeylModule, 20
Weight
for IsLeftAlgebraModuleElement, 23
Weights
for IsQuotientWeylModule, 11
for IsSubQuotientWeylModule, 11
for IsSubWeylModule, 11
for IsWeylModule, 11
WeightSpace
for IsQuotientWeylModule,IsList, 12
for IsSubQuotientWeylModule,IsList, 12
for IsSubWeylModule,IsList, 12
for IsWeylModule,IsList, 12
WeightSpaces
for IsQuotientWeylModule, 12
for IsSubQuotientWeylModule, 12
for IsSubWeylModule, 12
for IsWeylModule, 12
WeightToComposition
for IsInt, IsList, 28
WeylModule
for IsPosInt, IsList, IsString, IsPosInt, 6
for IsWeylModule,IsList, 6```

