
WeylModules
for simple simply-connected algebraic

groups

2.1

21 June 2024

Stephen Doty

Stephen Doty
Email: doty@math.luc.edu
Homepage: https://doty.math.luc.edu
Address: Department of Mathematics and Statistics

Loyola University Chicago
Chicago, Illinois 60660 USA

mailto://doty@math.luc.edu
https://doty.math.luc.edu

WeylModules 2

Abstract
WeylModules is a GAP Package supporting computer computations with Weyl modules for simple simply-
connected algebraic groups.

Copyright
© Copyright 2009–2024 by Stephen R. Doty.
This package is distributed under the terms and conditions of the GNU Public License Version 2 or (at your
option) any later version.

Acknowledgements

The development of this software was initiated in June 2003 while the author was visiting the Department
of Pure Mathematics and Mathematical Statistics (DPMMS) at the University of Cambridge, and continued
during subsequent visits to DPMMS in June 2004 and in May through July of 2007. The author was supported
by a Yip Fellowship at Magdalene College, Cambridge in 2007. The final stages of development took place
in Chicago and in January 2009 at Universität Bielefeld, where the author was supported by a Mercator grant
from the Deutsche Forschungsgemeinschaft (DFG).

The existence of this software owes much to the gentle prodding of Stuart Martin. Thanks are also due
to Yutaka Yoshii for testing an earlier version of the software, and Matt Fayers for supplying his GAP code for
computing the Mullineux map.

Contents

1 Introduction 4
1.1 Purpose . 4
1.2 Counterexample to Donkin’s conjecture . 5
1.3 ChangeLog . 5

2 Weyl modules 6
2.1 Constructors . 6
2.2 Filters . 8
2.3 Operations common to all four types . 9
2.4 Operations common to Weyl modules, submodules, and quotients 14
2.5 Operations on Weyl modules and their quotients . 15
2.6 Operations on Weyl modules . 17
2.7 Operations on quotients . 18
2.8 Operations on submodules . 18
2.9 Operations on subquotients . 21

3 Weights and Characters 23
3.1 Weights . 23
3.2 Characters . 23

4 Schur Algebras 26
4.1 Constructor and filter . 26
4.2 Decomposition matrices . 27
4.3 Partitions . 28

References 31

Index 32

3

Chapter 1

Introduction

1.1 Purpose

This GAP Package supports digital computer computations with Weyl modules for a given simple
simply-connected algebraic group G in positive characteristic p. Actually the group G itself never
appears in any of the computations, which take place instead using the algebra of distributions (also
known as the hyperalgebra) of G, taken over the prime field. One should refer to [Jan03] for the
definition of the algebra of distributions, and other basic definitions and properties related to Weyl
modules.

The algorithms are based on the method of [Irv86] (see also [Xi99]) and build on the existing
Lie algebra functionality in GAP. In principle, one can work with arbitrary weights for an arbitrary
(simple) root system; in practice, the functionality is limited by the size of the objects being computed.
If your Weyl module has dimension in the thousands, you may have to wait a very long time for certain
computations to finish.

The package is possibly most useful for doing computations in characteristic p, where p is rela-
tively small relative to the Coxeter number. The general theory of Weyl modules [Jan03] includes a
number of basic properties that break down (or are not known to hold) if the characteristic is too small.
In such cases, explicit computations are often useful.

Recall that a maximal vector is a weight vector which is killed by the positive unipotent radical;
equivalently, it is killed by the positive part of the algebra of distributions.

The main technical idea underlying this package is the following fact: computing all the maximal
vectors in a given Weyl module V classifies the nonzero Weyl modules W for which a nonzero ho-
momorphism from W into V exists. Such homological information is a powerful aid to understanding
structural properties of the Weyl module V . The implementation of this idea involves a brute force
search through each dominant weight space, examing all linear combinations (over the prime field)
and compiling a list of the ones which are maximal. This exploits the pleasant fact that for Weyl
modules of small dimension, the weight spaces tend to be small enough to be manageable.

Although most of the functions deal with the simple simply-connected case, there are a few func-
tions for dealing with Schur algebras and symmetric groups. Those commands are limited in scope,
and provided mainly as a convenience.

4

WeylModules 5

1.2 Counterexample to Donkin’s conjecture

In 2019, Chris Bendel, Dan Nakano, Cornelius Pillen, and Paul Sobaje [BNPS20] found the first
counterexample to Donkin’s tilting module conjecture using this package. This important advance led
to further development of the package.

1.3 ChangeLog

The initial release was Version 1.0 in 2009.
1. Versions 1.0 and 1.1 were released in 2009. The initial development was spurred by work on

the paper [BDM11].
2. Version 2.0 was released on 29 February 2024. The SubmoduleStructure command was

eliminated. Support was added for subquotients.
3. Version 2.1 (this version) was released on 21 June 2024. The documentation was completely

rewritten. There is more support for submodules and subquotients, including the new functions:
SocleLengthTwoQuotient, TwoFactorQuotientsContaining. These can be used to obtain Ext
information about a Weyl module.

Chapter 2

Weyl modules

This chapter discusses the commands available for computations (in positive characteristic p) with
Weyl modules, quotient Weyl modules, submodules of Weyl modules, and submodules of quotient
Weyl modules. Here the underlying Lie algebra is simply-connected and simple.

WARNING. In most cases, the dimension of space of maximal vectors of a given dominant weight
is either 0 or 1. Cases for which there exist two or more independent maximal vectors of the same
weight can lead to complications, such as a lack of rigidity in the submodule structure. Such situations
are relatively rare (and interesting). An example in Type D4 is the Weyl module of highest weight
[0,1,0,0], as pointed out on page 173 of [CPS75]. (I am grateful to Anton Cox for this reference.)

A Weyl module (as in the previous paragraph) with at least one weight space containing multi-
ple linearly independent maximal vectors is called ambiguous. Extra care is needed when studying
ambiguous modules.

2.1 Constructors

Here we consider functions that create Weyl modules, quotients of Weyl modules, submodules of
Weyl modules, and submodules of quotient Weyl modules (subquotients).

2.1.1 WeylModule

▷ WeylModule(p, wt, t, r) (operation)

▷ WeylModule(V, wt) (operation)

Returns: a WeylModule
The first form of the command (with four arguments) constructs a Weyl module of highest weight

wt in characteristic p of type t and rank r . The second form of the command (with two arguments)
constructs a Weyl module of highest weight wt of the same characteristic and root system as the first
parameter V , which must be an existing Weyl module.

Example
gap> V:= WeylModule(2,[1,0],"A",2);

V[1, 0]

gap> W:= WeylModule(V,[1,2]);

V[1, 2]

Weyl modules are attribute-storing objects (they remember their attributes after the first time they are
computed).

6

WeylModules 7

2.1.2 QuotientWeylModule

▷ QuotientWeylModule(S) (operation)

Returns: a QuotientWeylModule
Constructs the quotient module V/S corresponding to the given submodule S . Here V is the ambi-

ent Weyl module of the given submodule S .
Example

gap> W:= WeylModule(2,[2,0],"A",2);

V[2, 0]

gap> Q:= QuotientWeylModule(SocleWeyl(W));

3-dimensional quotient of V[2, 0]

Quotient Weyl modules are attribute-storing objects.

2.1.3 SubWeylModule

▷ SubWeylModule(V, v) (operation)

▷ SubWeylModule(S, v) (operation)

▷ SubWeylModule(V, list) (operation)

▷ SubWeylModule(S, list) (operation)

▷ SubWeylModuleDirectSum(V, list) (operation)

Returns: a SubWeylModule
Submodules are attribute-storing objects. The first form constructs the submodule of the given

Weyl module V generated by the given element v . The second form constructs the submodule (of
the ambient Weyl module) generated by the given submodule S and given element v . The third
form constructs the submodule of the given Weyl module V generated by the given element list of
elements. The fourth form constructs the submodule generated by the given submodule S and given
list of elements. The fifth form constructs the submodule of the Weyl module V which is the direct
sum of the given list of submodules (which are assumed to be linearly independent, without checking).

Example
gap> W:= WeylModule(2,[2,0],"A",2);

V[2, 0]

gap> m:= MaximalVectors(W);

[1*v0, y1*v0]

gap> S:= SubWeylModule(W, m[2]);

3-dimensional submod of V[2, 0]

gap> SubWeylModule(S, m[1]);

6-dimensional submod of V[2, 0]

gap> SubWeylModule(W, m);

6-dimensional submod of V[2, 0]

gap> SubWeylModule(S, m);

6-dimensional submod of V[2, 0]

2.1.4 SubQuotientWeylModule

▷ SubWeylModule(Q, v) (operation)

▷ SubWeylModule(S, v) (operation)

▷ SubWeylModule(Q, list) (operation)

▷ SubWeylModule(S, list) (operation)

WeylModules 8

▷ SubWeylModuleDirectSum(Q, list) (operation)

Returns: a SubQuotientWeylModule
Subquotients are attribute-storing objects. The first form constructs the submodule of the given

quotient Weyl module Q generated by the given element v . The second form constructs the subquotient
Weyl module (of the ambient quotient) generated by the given subquotient S and given element v .
The third form constructs the submodule of the given quotient Weyl module Q generated by the given
element list of elements. The fourth form constructs the subquotient Weyl module generated by
the given subquotient S and given list of elements. The fifth form constructs the submodule of the
quotient Weyl module Q which is the direct sum of the given list of subquotients (which are assumed
to be linearly independent, without checking).

Example
gap> W:= WeylModule(2,[2,0],"A",2);

V[2, 0]

gap> Q:= QuotientWeylModule(SocleWeyl(W));

3-dimensional quotient of V[2, 0]

gap> m:= MaximalVectors(Q);

[1*v0]

gap> S:= SubWeylModule(Q,m[1]);

3-dimensional submod of 3-dimensional quotient of V[2, 0]

gap> SubWeylModule(Q,m);

3-dimensional submod of 3-dimensional quotient of V[2, 0]

2.2 Filters

The following filters can be used to query whether or not an object has the indicated type.

2.2.1 IsWeylModule

▷ IsWeylModule(V) (filter)

Returns: true or false

2.2.2 IsQuotientWeylModule

▷ IsQuotientWeylModule(V) (filter)

Returns: true or false

2.2.3 IsSubWeylModule

▷ IsSubWeylModule(V) (filter)

Returns: true or false

2.2.4 IsSubQuotientWeylModule

▷ IsSubQuotientWeylModule(V) (filter)

Returns: true or false

WeylModules 9

2.3 Operations common to all four types

This section documents operations and attributes that can be applied to Weyl modules, quotients,
submodules, and subquotients. In the following, V is a Weyl module, Q is a quotient, S is a submodule,
and T is a subquotient. Section 2.1 documents the constructors for these objects. Furthermore, wt is a
weight.

In all the examples in this section, we take V , S , Q , and T to be as follows.
Example

gap> V:=WeylModule(V,[4,0]);

V[4, 0]

gap> Dim(V);

15

gap> m:= MaximalVectors(V);

[1*v0, y1*v0]

gap> S:= SubWeylModule(V,m[2]);

9-dimensional submod of V[4, 0]

gap> Q:= QuotientWeylModule(S);

6-dimensional quotient of V[4, 0]

gap> mm:= MaximalVectors(Q);

[1*v0, y1^(2)*v0]

gap> T:= SubWeylModule(Q, mm[2]);

3-dimensional submod of 6-dimensional quotient of V[4, 0]

2.3.1 BasisVecs

▷ BasisVecs(Q) (operation)

▷ BasisVecs(S) (operation)

▷ BasisVecs(T) (operation)

▷ BasisVecs(V) (operation)

Example
gap> BasisVecs(V);

[1*v0, y1*v0, y3*v0, y1^(2)*v0, y1*y3*v0, y1^(3)*v0, y3^(2)*v0,

y1^(2)*y3*v0, y1^(4)*v0, y1*y3^(2)*v0, y1^(3)*y3*v0, y3^(3)*v0,

y1^(2)*y3^(2)*v0, y1*y3^(3)*v0, y3^(4)*v0]

gap> BasisVecs(S);

[y1*v0, y3*v0, y1*y3*v0, y1^(3)*v0, y1*y3^(2)*v0, y1^(2)*y3*v0, y3^(3)*v0,

y1^(3)*y3*v0, y1*y3^(3)*v0]

gap> BasisVecs(Q);

[1*v0, y1^(2)*v0, y3^(2)*v0, y1^(4)*v0, y1^(2)*y3^(2)*v0, y3^(4)*v0]

gap> BasisVecs(T);

[y1^(2)*v0, y3^(2)*v0, y1^(2)*y3^(2)*v0]

2.3.2 Character

▷ Character(Q) (attribute)

▷ Character(S) (attribute)

▷ Character(T) (attribute)

▷ Character(V) (attribute)

Returns: a list

WeylModules 10

This function returns the character (as a list of weights and their multiplicities) of the given module.
Example

gap> Character(V);

[[4, 0], 1, [2, 1], 1, [3, -1], 1, [0, 2], 1, [1, 0], 1,

[-2, 3], 1, [2, -2], 1, [-1, 1], 1, [-4, 4], 1, [0, -1], 1,

[-3, 2], 1, [1, -3], 1, [-2, 0], 1, [-1, -2], 1, [0, -4], 1]

gap> Character(Q);

[[4, 0], 1, [0, 2], 1, [2, -2], 1, [-4, 4], 1, [-2, 0], 1,

[0, -4], 1]

gap> Character(S);

[[2, 1], 1, [3, -1], 1, [1, 0], 1, [-2, 3], 1, [0, -1], 1,

[-1, 1], 1, [1, -3], 1, [-3, 2], 1, [-1, -2], 1]

gap> Character(T);

[[0, 2], 1, [2, -2], 1, [-2, 0], 1]

2.3.3 DecompositionNumbers

▷ DecompositionNumbers(Q) (attribute)

▷ DecompositionNumbers(S) (attribute)

▷ DecompositionNumbers(T) (attribute)

▷ DecompositionNumbers(V) (attribute)

Returns: a list
Returns a list of highest weights of simple composition factors (in the underlying characteristic)

and their corresponding multiplicities in the given module.
Example

gap> DecompositionNumbers(V);

[[4, 0], 1, [2, 1], 1, [0, 2], 1]

gap> DecompositionNumbers(Q);

[[4, 0], 1, [0, 2], 1]

gap> DecompositionNumbers(S);

[[2, 1], 1]

gap> DecompositionNumbers(T);

[[0, 2], 1]

2.3.4 Dim

▷ Dim(Q) (attribute)

▷ Dim(S) (attribute)

▷ Dim(T) (attribute)

▷ Dim(V) (attribute)

Returns: an integer (the dimension of the module)
Example

gap> Dim(V);

15

gap> Dim(Q);

6

gap> Dim(S);

9

gap> Dim(T);

3

WeylModules 11

2.3.5 DominantWeights

▷ DominantWeights(Q) (attribute)

▷ DominantWeights(S) (attribute)

▷ DominantWeights(T) (attribute)

▷ DominantWeights(V) (attribute)

Returns: a list
This function lists the dominant weights occurring in the given module (with nonzero multiplicity).

The multiplicities are not given.
Example

gap> DominantWeights(V);

[[4, 0], [2, 1], [0, 2], [1, 0]]

gap> DominantWeights(Q);

[[4, 0], [0, 2]]

gap> DominantWeights(S);

[[2, 1], [1, 0]]

gap> DominantWeights(T);

[[0, 2]]

2.3.6 DominantWeightSpaces

▷ DominantWeightSpaces(Q) (attribute)

▷ DominantWeightSpaces(S) (attribute)

▷ DominantWeightSpaces(T) (attribute)

▷ DominantWeightSpaces(V) (attribute)

Returns: a list
The output of this function is a list consisting of a weight followed by a list of basis vectors for the

corresponding weight space.
Example

gap> DominantWeightSpaces(V);

[[4, 0], [1*v0], [2, 1], [y1*v0], [0, 2], [y1^(2)*v0], [1, 0],

[y1*y3*v0]]

gap> DominantWeightSpaces(Q);

[[4, 0], [1*v0], [0, 2], [y1^(2)*v0]]

gap> DominantWeightSpaces(S);

[[2, 1], [y1*v0], [1, 0], [y1*y3*v0]]

gap> DominantWeightSpaces(T);

[[0, 2], [y1^(2)*v0]]

2.3.7 Weights

▷ Weights(Q) (attribute)

▷ Weights(S) (attribute)

▷ Weights(T) (attribute)

▷ Weights(V) (attribute)

Returns: a list
Lists the weights in the given module.

Example
gap> Weights(V);

[[4, 0], [2, 1], [3, -1], [0, 2], [1, 0], [-2, 3], [2, -2],

WeylModules 12

[-1, 1], [-4, 4], [0, -1], [-3, 2], [1, -3], [-2, 0],

[-1, -2], [0, -4]]

gap> Weights(Q);

[[4, 0], [0, 2], [2, -2], [-4, 4], [-2, 0], [0, -4]]

gap> Weights(S);

[[2, 1], [3, -1], [1, 0], [-2, 3], [0, -1], [-1, 1], [1, -3],

[-3, 2], [-1, -2]]

gap> Weights(T);

[[0, 2], [2, -2], [-2, 0]]

2.3.8 WeightSpaces

▷ WeightSpaces(Q) (attribute)

▷ WeightSpaces(S) (attribute)

▷ WeightSpaces(T) (attribute)

▷ WeightSpaces(V) (attribute)

Returns: a list
Computes a list consisting of weights followed by a basis of their corresponding weight spaces,

for each weight of the given module.
Example

gap> WeightSpaces(V);

[[4, 0], [1*v0], [2, 1], [y1*v0], [3, -1], [y3*v0], [0, 2],

[y1^(2)*v0], [1, 0], [y1*y3*v0], [-2, 3], [y1^(3)*v0], [2, -2],

[y3^(2)*v0], [-1, 1], [y1^(2)*y3*v0], [-4, 4], [y1^(4)*v0],

[0, -1], [y1*y3^(2)*v0], [-3, 2], [y1^(3)*y3*v0], [1, -3],

[y3^(3)*v0], [-2, 0], [y1^(2)*y3^(2)*v0], [-1, -2],

[y1*y3^(3)*v0], [0, -4], [y3^(4)*v0]]

gap> WeightSpaces(Q);

[[4, 0], [1*v0], [0, 2], [y1^(2)*v0], [2, -2], [y3^(2)*v0],

[-4, 4], [y1^(4)*v0], [-2, 0], [y1^(2)*y3^(2)*v0], [0, -4],

[y3^(4)*v0]]

gap> WeightSpaces(S);

[[2, 1], [y1*v0], [3, -1], [y3*v0], [1, 0], [y1*y3*v0],

[-2, 3], [y1^(3)*v0], [0, -1], [y1*y3^(2)*v0], [-1, 1],

[y1^(2)*y3*v0], [1, -3], [y3^(3)*v0], [-3, 2], [y1^(3)*y3*v0],

[-1, -2], [y1*y3^(3)*v0]]

gap> WeightSpaces(T);

[[0, 2], [y1^(2)*v0], [2, -2], [y3^(2)*v0], [-2, 0],

[y1^(2)*y3^(2)*v0]]

2.3.9 WeightSpace

▷ WeightSpace(Q, wt) (operation)

▷ WeightSpace(S, wt) (operation)

▷ WeightSpace(T, wt) (operation)

▷ WeightSpace(V, wt) (operation)

Returns: a list
Gives a basis for the weight space of the given weight wt .

WeylModules 13

Example
gap> WeightSpace(V, [2,1]);

[y1*v0]

gap> WeightSpace(Q, [2,1]);

[]

gap> WeightSpace(S, [2,1]);

[y1*v0]

gap> WeightSpace(T, [2,-2]);

[y3^(2)*v0]

2.3.10 TheCharacteristic

▷ TheCharacteristic(Q) (operation)

▷ TheCharacteristic(S) (operation)

▷ TheCharacteristic(T) (operation)

▷ TheCharacteristic(V) (operation)

Returns: an integer
Gives the characteristic of the base field.

Example
gap> TheCharacteristic(V);

2

gap> TheCharacteristic(Q);

2

gap> TheCharacteristic(S);

2

gap> TheCharacteristic(T);

2

2.3.11 TheLieAlgebra

▷ TheLieAlgebra(Q) (attribute)

▷ TheLieAlgebra(S) (attribute)

▷ TheLieAlgebra(T) (attribute)

▷ TheLieAlgebra(V) (attribute)

Returns: a Lie algebra
Gives the underlying Lie algebra for the given module.

Example
gap> TheLieAlgebra(V);

<Lie algebra of dimension 8 over Rationals>

gap> TheLieAlgebra(Q);

<Lie algebra of dimension 8 over Rationals>

gap> TheLieAlgebra(S);

<Lie algebra of dimension 8 over Rationals>

gap> TheLieAlgebra(T);

<Lie algebra of dimension 8 over Rationals>

The GAP manual gives additional operations for various properties and attributes of such Lie algebras
and their enveloping algebras.

WeylModules 14

2.4 Operations common to Weyl modules, submodules, and quotients

In the following, Q is a quotient Weyl module, S is a submodule, and V is a Weyl module.

2.4.1 MaximalVectors

▷ MaximalVectors(Q, wt) (operation)

▷ MaximalVectors(Q) (attribute)

▷ MaximalVectors(S, wt) (operation)

▷ MaximalVectors(S) (attribute)

▷ MaximalVectors(V, wt) (operation)

▷ MaximalVectors(V) (attribute)

Returns: a list
Returns a list of linearly independent maximal vectors for the given dominant weight wt or for all

dominant weights of the module. The maximal vectors of a particular weight form a basis of the space
of maximal vectors of that weight.

In the following example, we assume that V , Q , and S are the same modules as defined in the
example at the beginning of Section 2.3.

Example
gap> MaximalVectors(V);

[1*v0, y1*v0]

gap> m:= MaximalVectors(V);

[1*v0, y1*v0]

gap> List(m, Weight);

[[4, 0], [2, 1]]

gap> MaximalVectors(V, [2,1]);

[y1*v0]

gap> m:= MaximalVectors(Q);

[1*v0, y1^(2)*v0]

gap> List(m, Weight);

[[4, 0], [0, 2]]

gap> MaximalVectors(Q, [0,2]);

[y1^(2)*v0]

gap> m:= MaximalVectors(S);

[y1*v0]

gap> List(m, Weight);

[[2, 1]]

gap> MaximalVectors(S, [2,1]);

[y1*v0]

2.4.2 IsAmbiguous

▷ IsAmbiguous(Q) (attribute)

▷ IsAmbiguous(S) (attribute)

▷ IsAmbiguous(V) (attribute)

Returns: true or false
The module is ambiguous if it has two or more linearly independent maximal vectors of the same

weight.

WeylModules 15

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> IsAmbiguous(V);

true

2.4.3 AmbiguousMaxVecs

▷ AmbiguousMaxVecs(Q) (attribute)

▷ AmbiguousMaxVecs(S) (attribute)

▷ AmbiguousMaxVecs(V) (attribute)

Returns: a list
This function lists a basis for the subspace of ambiguous maximal vectors.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> AmbiguousMaxVecs(V);

[y1*y3*v0, y4*v0]

2.5 Operations on Weyl modules and their quotients

In the following, Q is a quotient Weyl module and V is a Weyl module.

2.5.1 ActOn

▷ ActOn(Q, u, v) (operation)

▷ ActOn(V, u, v) (operation)

Returns: An element of the Weyl module or quotient
This function returns the result of acting by the hyperalgebra element u on the given vector v .

Here v must be an element of the given Weyl module V or quotient Weyl module Q . The command
LatticeGeneratorsInUEA is a pre-existing GAP command; see the chapter on Lie algebras in the
GAP reference manual for further details. The lattice generators are regarded as standard generators
of the hyperalgebra for computing the action.

Example
gap> V:= WeylModule(2, [1,0], "G", 2);

V[1, 0]

gap> L:= TheLieAlgebra(V);

<Lie algebra of dimension 14 over Rationals>

gap> g:= LatticeGeneratorsInUEA(L);

[y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, (h13/1), (h14/1)]

gap> b:= BasisVecs(V);

[1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0]

gap> ActOn(V, g[1]^2 + g[7], b[1]);

0*v0

gap> ActOn(V, g[1]*g[6], b[1]);

y1*y6*v0

WeylModules 16

2.5.2 Generator

▷ Generator(Q) (operation)

▷ Generator(V) (operation)

Returns: a highest weight vector
This returns a generating vector of the given module.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> Generator(V);

1*v0

2.5.3 GensSocleLayers

▷ GensSocleLayers(Q) (attribute)

▷ GensSocleLayers(V) (attribute)

Returns: a list
Returns a list of lists, such that the ith list gives a list of generators of the ith module in the socle

series of the input.
Example

gap> V:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> GensSocleLayers(V);

[[y1*y4*v0, y1*y3*y4*v0+y1*y6*v0+y3*y5*v0,

y1*y4*y6*v0+y3*y4*y5*v0+y4^(3)*v0], [y4*v0, y1^(2)*y3*y6*v0],

[y1*y3*v0], [y5*y6*v0], [y1*y6*v0+y4^(2)*v0], [1*v0]]

2.5.4 PrintSocleLayers

▷ PrintSocleLayers(Q) (operation)

▷ PrintSocleLayers(V) (operation)

Returns: nothing
Prints the weights of the generators of the socle layers corresponding to the output of the previous

command. These are the highest weights of the simple composition factors in each socle layer.
In the following example, we assume that V is the same Weyl module defined in the preceding

example.
Example

gap> PrintSocleLayers(V);

Printing highest weights of simples in socle layers of V[3, 0]

Layer 1: [[0, 1], [1, 0], [0, 0]]

Layer 2: [[2, 0], [0, 0]]

Layer 3: [[2, 0]]

Layer 4: [[0, 0]]

Layer 5: [[1, 0]]

Layer 6: [[3, 0]]

WeylModules 17

2.5.5 SocleSeries

▷ SocleSeries(Q) (attribute)

▷ SocleSeries(V) (attribute)

Returns: a list
Returns the socle series of its input module, as a list of submodules.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> SocleSeries(V);

[21-dimensional submod of V[3, 0], 28-dimensional submod of V[3, 0],

34-dimensional submod of V[3, 0], 35-dimensional submod of V[3, 0],

41-dimensional submod of V[3, 0], 77-dimensional submod of V[3, 0]]

2.5.6 SocleWeyl

▷ SocleWeyl(V) (attribute)

▷ SocleWeyl(Q) (attribute)

Returns: a submodule
This function returns the socle of the given module.

Example
gap> V:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> SocleWeyl(V);

21-dimensional submod of V[3, 0]

2.6 Operations on Weyl modules

This section documents additional operations that can be applied to an existing Weyl module V .

2.6.1 MaximalSubmodule

▷ MaximalSubmodule(V) (attribute)

Returns: a submodule
Calculates and returns the unique maximal submodule of the given Weyl module V .

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[3, 0]

gap> MaximalSubmodule(V);

7-dimensional submod of V[3, 0]

2.6.2 SimpleQuotient

▷ SimpleQuotient(V) (attribute)

Returns: a quotient Weyl module
Calculates and returns the simple quotient by the unique maximal submodule of the given Weyl

module.

WeylModules 18

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[3, 0]

gap> Q:= SimpleQuotient(V);

3-dimensional quotient of V[3, 0]

2.7 Operations on quotients

In the following, Q is a quotient Weyl module.

2.7.1 AmbientWeylModule

▷ AmbientWeylModule(Q) (operation)

Returns: a Weyl module
This returns the ambient Weyl module V corresponding to the given quotient Q .
In the following example, we assume that Q is the same as the quotient module defined in the

preceding example.
Example

gap> AmbientWeylModule(Q);

V[3, 0]

2.7.2 DefiningKernel

▷ DefiningKernel(Q) (operation)

Returns: a submodule
This returns the kernel corresponding to the given quotient Q . In other words, it returns the sub-

module S such that Q is isomorphic to V/S, where V is the ambient Weyl module.
In the following example, we assume that Q is the same as the quotient module in the preceding

example.
Example

gap> DefiningKernel(Q);

7-dimensional submod of V[3, 0]

2.8 Operations on submodules

In the following, S is a submodule.

2.8.1 AmbientWeylModule

▷ AmbientWeylModule(S) (operation)

Returns: a Weyl module
This function returns the ambient Weyl module containing the given submodule S .

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[3, 0]

gap> S:= MaximalSubmodule(V);

7-dimensional submod of V[3, 0]

WeylModules 19

gap> AmbientWeylModule(S);

V[3, 0]

2.8.2 Generators

▷ Generators(S) (operation)

Returns: a list
Returns a list of generators of the given submodule S . In the following example, we assume that

S is the same as in the preceding example.
Example

gap> Generators(S);

[y1*v0]

2.8.3 IsWithin

▷ IsWithin(S, v) (operation)

Returns: true or false
This function returns true if and only if the given vector v lies in the given submodule S .

Example
gap> V:= WeylModule(3,[3,0],"A",2);

V[3, 0]

gap> S:= MaximalSubmodule(V);

7-dimensional submod of V[3, 0]

gap> g:= Generators(S);

[y1*v0]

gap> IsWithin(S, g[1]);

true

2.8.4 NextSocle

▷ NextSocle(S) (operation)

Returns: a SubWeylModule
This function returns the maximal submodule T containing the given submodule S such that T/S

is semisimple. If S happens to be an element of the socle series then the function returns the next
element in the socle series.

Example
gap> W:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> g:= Generators(SocleWeyl(W));

[y1*y4*v0, y1*y3*y4*v0+y1*y6*v0+y3*y5*v0, y1*y4*y6*v0+y3*y4*y5*v0+y4^(3)*v0]

gap> S:= SubWeylModule(W, g[1]);

14-dimensional submod of V[3, 0]

gap> T:= NextSocle(S);

21-dimensional submod of V[3, 0]

gap> DecompositionNumbers(T);

[[0, 1], 1, [1, 0], 1, [0, 0], 1]

In the above example, S is a simple submodule of the socle, and NextSocle(S) computes an extension
of it by two simples.

WeylModules 20

2.8.5 GensNextSocle

▷ GensNextSocle(S) (operation)

Returns: a list
This function returns a list of generators of the submodule returned by NextSocle(S). In the

example below, S is the submodule constructed in the preceding example.
Example

gap> g:= GensNextSocle(S);

[y1*y6*v0+y3*y5*v0, y4^(3)*v0]

gap> List(g, Weight);

[[1, 0], [0, 0]]

2.8.6 SocleLengthTwoQuotient

▷ SocleLengthTwoQuotient(S) (attribute)

Returns: a QuotientWeylModule
This function returns a quotient of the ambient Weyl module V with socle series length at most

two such that S lies in its defining kernel.
Example

gap> W:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> ss:= SocleSeries(W);

[21-dimensional submod of V[3, 0], 28-dimensional submod of V[3, 0],

34-dimensional submod of V[3, 0], 35-dimensional submod of V[3, 0],

41-dimensional submod of V[3, 0], 77-dimensional submod of V[3, 0]]

gap> amv:= AmbiguousMaxVecs(W);

[y1*y3*v0, y4*v0]

gap> Q1:= SocleLengthTwoQuotient(ss[4]);

42-dimensional quotient of V[3, 0]

gap> PrintSocleLayers(Q1);

Printing highest weights of simples in socle layers of

42-dimensional quotient of V[3, 0]

Layer 1: [[1, 0]]

Layer 2: [[3, 0]]

gap> Q2:= SocleLengthTwoQuotient(SubWeylModule(W,amv[1]+amv[2]));

48-dimensional quotient of V[3, 0]

gap> PrintSocleLayers(Q2);

Printing highest weights of simples in socle layers of

48-dimensional quotient of V[3, 0]

Layer 1: [[2, 0], [1, 0]]

Layer 2: [[3, 0]]

Here we see an example of an ambiguous Weyl module with different quotients of socle length two.

2.8.7 TwoFactorQuotientsContaining

▷ TwoFactorQuotientsContaining(S) (attribute)

Returns: a list of QuotientWeylModules
This returns a list of quotients of the ambient Weyl module, each having exactly two composition

factors, each of which contain S in their defining kernel. Such quotients realize non-split extensions

WeylModules 21

of the simple top composition factor of V . NOTE. Even when S is the trivial module, we do not claim
that the output will give all of the extensions.

In the following example, we assume that W, amv are as defined in the preceding example.
Example

gap> Q:= TwoFactorQuotientsContaining(SubWeylModule(W,amv[1]+amv[2]));

[42-dimensional quotient of V[3, 0], 42-dimensional quotient of V[3, 0]]

gap> PrintSocleLayers(Q[1]);

Printing highest weights of simples in socle layers of

42-dimensional quotient of V[3, 0]

Layer 1: [[1, 0]]

Layer 2: [[3, 0]]

gap> PrintSocleLayers(Q[2]);

Printing highest weights of simples in socle layers of

42-dimensional quotient of V[3, 0]

Layer 1: [[2, 0]]

Layer 2: [[3, 0]]

Here we see that the ambient Weyl module has at least two non-isomorphic extensions realized in
its second radical. Comparing with information from an earlier example (see PrintSocleLayers

(2.5.4)) reveals that the Weyl module in question is non-rigid (its socle and radical series do not
coincide).

2.9 Operations on subquotients

In the following, T is a subquotient.

2.9.1 AmbientQuotient

▷ AmbientQuotient(T) (operation)

Returns: a QuotientWeylModule
This function returns the ambient quotient Weyl module containing the given subquotient T .

Example
gap> W:= WeylModule(2,[3,0],"G",2);

V[3, 0]

gap> m:= AmbiguousMaxVecs(W); List(m, Weight);

[y1*y3*v0, y4*v0]

[[2, 0], [2, 0]]

gap> Q:= QuotientWeylModule(SubWeylModule(W,m[1]));

64-dimensional quotient of V[3, 0]

gap> subQ:= SubWeylModule(Q, m[2]);

21-dimensional submod of 64-dimensional quotient of V[3, 0]

gap> AmbientQuotient(subQ);

64-dimensional quotient of V[3, 0]

2.9.2 Generators

▷ Generators(T) (operation)

Returns: a list

WeylModules 22

This returns a list of generators for the given subquotient T . In the next example, we assume
that subQ is the subquotient constructed in the example for the AmbientQuotient (2.9.1) command,
documented above.

Example
gap> Generators(subQ);

[y4*v0]

2.9.3 IsWithin

▷ IsWithin(T, v) (operation)

Returns: true or false
This returns true if and only if the image of the given vector v (under the quotient map from the

ambient Weyl module to the ambient quotient) lies in the given subquotient T . In the next example,
we assume that subQ, Q, and m are as defined in the example for AmbientQuotient (2.9.1) above.

Example
gap> IsWithin(subQ,m[2]);

true

gap> IsWithin(subQ, Generator(Q));

false

2.9.4 NextSocle

▷ NextSocle(T) (operation)

Returns: a SubQuotientWeylModule
This function returns the maximal subquotient T containing the given subquotient S such that T/S

is semisimple. If S happens to be an element of the socle series then the function returns the next
element in the socle series.

In the next example, we assume that subQ is the subquotient constructed in the example for the
AmbientQuotient (2.9.1) command, documented above.

Example
gap> DecompositionNumbers(subQ);

[[2, 0], 1, [0, 1], 1, [0, 0], 1]

gap> N:= NextSocle(subQ);

22-dimensional submod of 64-dimensional quotient of V[3, 0]

gap> DecompositionNumbers(N);

[[2, 0], 1, [0, 1], 1, [0, 0], 2]

Chapter 3

Weights and Characters

This chapter documents additional functions available for computation of weights and characters.

3.1 Weights

3.1.1 Weight (for IsLeftAlgebraModuleElement)

▷ Weight(elt) (operation)

Returns: a list of integers
The weight of the given element elt is calculated and returned.

Example
gap> V:= WeylModule(3,[3,3],"A",2);

V[3, 3]

gap> m:= MaximalVectors(V);

[1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,

y1*y2*y3*v0+y1^(2)*y2^(2)*v0]

gap> Weight(m[2]);

[1, 4]

gap> List(m,Weight);

[[3, 3], [1, 4], [4, 1], [0, 3], [3, 0], [1, 1]]

NOTE. The above trick of applying the Weight function across an entire list lst of vectors, with the
command List(lst, Weight), is very useful in many situations. This capability is built in to the
List function in GAP.

3.2 Characters

We have already seen the function Character (2.3.2), that computes the (formal) character of a given
Weyl module, quotient, submodule, or subquotient. We now consider some additional functions for
computing characters.

3.2.1 DecomposeCharacter

▷ DecomposeCharacter(ch, p, typ, rk) (operation)

Returns: a list (of simple highest weights and their multiplicities)

23

WeylModules 24

If ch is a given character (of some module) then this function computes the multiplicities of the
simple characters in ch , thus obtaining the decomposition numbers of the module. Here it is necessary
to specify the characteristic p and root system (of type typ and rank rk) for the simple characters.
For instance, this can be used to decompose tensor products.

Example
gap> V:= WeylModule(2,[2,0],"A",2);

V[2, 0]

gap> ch:= ProductCharacter(Character(V),Character(V));

[[4, 0], 1, [2, 1], 2, [3, -1], 2, [0, 2], 3, [1, 0], 4,

[2, -2], 3, [-2, 3], 2, [-1, 1], 4, [0, -1], 4, [1, -3], 2,

[-4, 4], 1, [-3, 2], 2, [-2, 0], 3, [-1, -2], 2, [0, -4], 1]

gap> DecomposeCharacter(ch,2,"A",2);

[[4, 0], 1, [2, 1], 2, [0, 2], 3, [1, 0], 2]

3.2.2 DifferenceCharacter

▷ DifferenceCharacter(ch1, ch2) (operation)

Returns: a list (a character)
If ch1 and ch2 are given characters, this function returns their formal difference character. It is

used in the definition of the DecomposeCharacter function.
Example

gap> DifferenceCharacter(Character(V),Character(V));

[]

The empty list here implements the zero character.

3.2.3 ProductCharacter

▷ ProductCharacter(ch1, ch2) (operation)

Returns: a list (a character)
Returns the product character of its inputs ch1 and ch2 . If ch1 and ch2 are characters of modules

then the output of this function is the character of the tensor product of the modules.
Example

gap> V:= WeylModule(2,[2,0],"A",2);

V[2, 0]

gap> ch:= ProductCharacter(Character(V),Character(V));

[[4, 0], 1, [2, 1], 2, [3, -1], 2, [0, 2], 3, [1, 0], 4,

[2, -2], 3, [-2, 3], 2, [-1, 1], 4, [0, -1], 4, [1, -3], 2,

[-4, 4], 1, [-3, 2], 2, [-2, 0], 3, [-1, -2], 2, [0, -4], 1]

By applying the function DecomposeCharacter (3.2.1) we can decompose tensor products in positive
characteristic.

3.2.4 SimpleCharacter

▷ SimpleCharacter(p, wt, typ, rk) (operation)

Returns: a list (a character)
Computes the simple character of highest weight wt in characteristic p . The arguments typ and

rk specify the type and rank of the underlying root system. The function uses Steinberg’s tensor
product theorem.

WeylModules 25

Example
gap> SimpleCharacter(2,[2,0],"A",2);

[[2, 0], 1, [-2, 2], 1, [0, -2], 1]

Another way to compute the same result is to compute the Character of the output of
SimpleQuotient(V), where V is the WeylModule in the same characteristic and root system with
the same highest weight.

Example
gap> V:= WeylModule(2,[2,0],"A",2);

V[2, 0]

gap> Character(SimpleQuotient(V));

[[2, 0], 1, [-2, 2], 1, [0, -2], 1]

Chapter 4

Schur Algebras

The decomposition numbers for the algebraic group SLn of type An−1 determine the decomposition
numbers for the corresponding Schur algebras, and thus also determine the decomposition numbers
for symmetric groups. People working with Schur algebras and symmetric groups often prefer to
use partitions to label highest weights. Although it is trivial to convert between SLn weight notation
and partition notation, for the sake of convenience, we provide a few functions that perform such
conversions, and various other functions related to Schur algebras and symmetric groups.

NOTE. The SymmetricGroupDecompositionMatrix (4.2.3) function for symmetric group de-
composition numbers is quite slow, so readers interested in symmetric group computations may want
to look elsewhere for more effcient tools.

4.1 Constructor and filter

Weyl modules for a Schur algebra are constructed by the following.

4.1.1 SchurAlgebraWeylModule

▷ SchurAlgebraWeylModule(p, ptn) (operation)

Returns: a Weyl module
This function creates and returns a Weyl module of highest weight defined by the given partition

ptn . The length of the partition, which may be padded by zeros as necessary, defines the underlying
GLn and the Schur algebra degree.

Example
gap> V:= SchurAlgebraWeylModule(3,[1,1,0]);

Schur algebra module V[1, 1, 0]

Here we define the Weyl module for GL3 of highest weight [1, 1] in the partition notation.

4.1.2 IsSchurAlgebraWeylModule

▷ IsSchurAlgebraWeylModule(V) (filter)

Returns: true or false
Returns true if and only if the given V is a Schur algebra Weyl module.

26

WeylModules 27

4.2 Decomposition matrices

Decomposition matrices for Schur algebras and symmteric groups in positive characteristic can be
computed.

4.2.1 SchurAlgebraDecompositionMatrix

▷ SchurAlgebraDecompositionMatrix(p, n, r) (operation)

Returns: a matrix
Returns the decomposition matrix for the Schur algebra S(n,r) in characteristc p . The rows and

columns of the matrix are indexed by the partitions produced by BoundedPartitions(n,r) ordered
the same as in the output of that function.

Example
gap> SchurAlgebraDecompositionMatrix(3,4,3);

[[1, 1, 0], [0, 1, 1], [0, 0, 1]]

Here we compute the decomposition matrix for S(4,3) in characteristic 3. The rows and columns of
the matrix are indexed by the following partitions:

Example
gap> BoundedPartitions(4,3);

[[3, 0, 0, 0], [2, 1, 0, 0], [1, 1, 1, 0]]

4.2.2 SymmetricGroupDecompositionNumbers

▷ SymmetricGroupDecompositionNumbers(p, ptn) (operation)

Returns: a list
Returns the decomposition numbers of the dual Specht module indexed by the given partition ptn

in characteristic p .
Example

gap> SymmetricGroupDecompositionNumbers(2,[2,1,1]);

[[2, 1, 1], 1, [1, 1, 1, 1], 1]

4.2.3 SymmetricGroupDecompositionMatrix

▷ SymmetricGroupDecompositionMatrix(p, n) (operation)

Returns: a matrix
Returns the decomposition matrix for the symmetric group on n letters in characteristc p . The

rows of the matrix are labeled by the partitions of n in the order produced by AllPartitions(n), and
the columns are labeled by the p -restricted partitions of n . NOTE. GAP has a built-in Partitions

function that also gives all the partitions of n , but the ordering is different.
Example

gap> SymmetricGroupDecompositionMatrix(2,4);

[[0, 1], [1, 1], [1, 0], [1, 1], [0, 1]]

gap> AllPartitions(4);

[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

gap> pRestrictedPartitions(2,4);

[[2, 1, 1], [1, 1, 1, 1]]

WeylModules 28

4.3 Partitions

This section documents a number of functions for converting between weights and partitions (in type
A) as well as other related functions.

4.3.1 CompositionToWeight

▷ CompositionToWeight(mu) (operation)

Returns: a list (a weight)
This converts the given composition mu into a weight by taking successive differences of its parts.

Example
gap> CompositionToWeight([1,2,0,1]);

[-1, 2, -1]

4.3.2 WeightToComposition

▷ WeightToComposition(r, wt) (operation)

Returns: a list (a composition) or fail
This converts the given weight wt into a composition of degree r . Without degree information,

this function is ill defined. Returns fail if the operation is impossible.
Example

gap> WeightToComposition(4,[-1, 2, -1]);

[1, 2, 0, 1]

gap> WeightToComposition(8,[-1, 2, -1]);

[2, 3, 1, 2]

gap> WeightToComposition(6,[-1, 2, -1]);

fail

4.3.3 AllPartitions

▷ AllPartitions(n) (operation)

Returns: a list of partitions
Lists all the partitions of n . Note that GAP has a built-in Partitions function that also gives all the

partitions of n , but with a different ordering.
Example

gap> AllPartitions(5);

[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],

[1, 1, 1, 1, 1]]

4.3.4 BoundedPartitions

▷ BoundedPartitions(n, r, s) (operation)

▷ BoundedPartitions(n, r) (operation)

Returns: a list of partitions
Returns a list of n part partitions of degree r such that each part lies in the closed interval [0,s].

The second form returns a list of n part partitions of degree r . Note that BoundedPartitions(n,r)
is equivalent to BoundedPartitions(n,r,r).

WeylModules 29

Example
gap> BoundedPartitions(5,3,2);

[[2, 1, 0, 0, 0], [1, 1, 1, 0, 0]]

gap> BoundedPartitions(5,3,3);

[[3, 0, 0, 0, 0], [2, 1, 0, 0, 0], [1, 1, 1, 0, 0]]

gap> BoundedPartitions(5,3);

[[3, 0, 0, 0, 0], [2, 1, 0, 0, 0], [1, 1, 1, 0, 0]]

4.3.5 Conjugate

▷ Conjugate(ptn) (operation)

Returns: a list (a partition)
Returns the conjugate partition of ptn .

Example
gap> Conjugate([4]);

[1, 1, 1, 1]

gap> Conjugate([2,1,1,1]);

[4, 1]

4.3.6 pRegular

▷ pRegular(p, ptn) (operation)

Returns: true or false
Returns true if and only if the given partition ptn is p -regular.

Example
gap> pRegular(3,[3,1,1]);

true

gap> pRegular(2,[3,1,1]);

false

4.3.7 pRegularPartitions

▷ pRegularPartitions(p, n) (operation)

Returns: a list
Returns a list of all p -regular partitions of n .

Example
gap> pRegularPartitions(3,5);

[[4, 1], [3, 1, 1], [5], [2, 2, 1], [3, 2]]

gap> pRegularPartitions(2,5);

[[3, 2], [4, 1], [5]]

4.3.8 pRestricted

▷ pRestricted(p, ptn) (operation)

Returns: true or false
Returns true if and only if the given partition ptn is p -restricted.

WeylModules 30

Example
gap> pRestricted(3,[3,1,1]);

true

gap> pRestricted(2,[3,1]);

false

4.3.9 pRestrictedPartitions

▷ pRestrictedPartitions(p, n) (operation)

Returns: a list
Returns a list of all p -restricted partitions of n .

Example
gap> pRestrictedPartitions(3,5);

[[3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]

gap> pRestrictedPartitions(2,5);

[[2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]

4.3.10 Mullineux

▷ Mullineux(p, mu) (operation)

Returns: a list
Applies the Mullineux map to the partition mu in characteristic p .

Example
gap> Mullineux(2,[1,1,1]);

p-singular!

gap> Mullineux(2,[3]);

[3]

gap> Mullineux(3,[3]);

[2, 1]

gap> Mullineux(3,[2,1]);

[3]

References

[BDM11] C. Bowman, S. R. Doty, and S. Martin. Decomposition of tensor products of modular
irreducible representations for SL3. Int. Electron. J. Algebra, 9:177–219, 2011. With an
appendix by C. M. Ringel. 5

[BNPS20] Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen, and Paul Sobaje. Counterex-
amples to the tilting and (p,r)-filtration conjectures. J. Reine Angew. Math., 767:193–202,
2020. 5

[CPS75] Edward Cline, Brian Parshall, and Leonard Scott. Cohomology of finite groups of Lie
type. I. Inst. Hautes Études Sci. Publ. Math., (45):169–191, 1975. 6

[Irv86] Ronald S. Irving. The structure of certain highest weight modules for SL3. J. Algebra,
99(2):438–457, 1986. 4

[Jan03] Jens Carsten Jantzen. Representations of algebraic groups, volume 107 of Mathemati-
cal Surveys and Monographs. American Mathematical Society, Providence, RI, second
edition, 2003. 4

[Xi99] Nanhua Xi. Maximal and primitive elements in Weyl modules for type A2. J. Algebra,
215(2):735–756, 1999. 4

31

Index

ActOn

for IsQuotientWeylMod-
ule,IsUEALatticeElement,IsLeftAlgebraModuleElement,
15

for IsWeylModule, IsUEALatticeElement,
IsLeftAlgebraModuleElement, 15

AllPartitions

for IsInt, 28
AmbientQuotient

for IsSubQuotientWeylModule, 21
AmbientWeylModule

for IsQuotientWeylModule, 18
for IsSubWeylModule, 18

AmbiguousMaxVecs

for IsQuotientWeylModule, 15
for IsSubWeylModule, 15
for IsWeylModule, 15

BasisVecs

for IsQuotientWeylModule, 9
for IsSubQuotientWeylModule, 9
for IsSubWeylModule, 9
for IsWeylModule, 9

BoundedPartitions

for IsInt, IsInt, 28
for IsInt, IsInt, IsInt, 28

Character

for IsQuotientWeylModule, 9
for IsSubQuotientWeylModule, 9
for IsSubWeylModule, 9
for IsWeylModule, 9

CompositionToWeight

for IsList, 28
Conjugate

for IsList, 29

DecomposeCharacter

for IsList, IsPosInt,IsString, IsPosInt, 23
DecompositionNumbers

for IsQuotientWeylModule, 10
for IsSubQuotientWeylModule, 10
for IsSubWeylModule, 10
for IsWeylModule, 10

DefiningKernel

for IsQuotientWeylModule, 18
DifferenceCharacter

for IsList,IsList, 24
Dim

for IsQuotientWeylModule, 10
for IsSubQuotientWeylModule, 10
for IsSubWeylModule, 10
for IsWeylModule, 10

DominantWeights

for IsQuotientWeylModule, 11
for IsSubQuotientWeylModule, 11
for IsSubWeylModule, 11
for IsWeylModule, 11

DominantWeightSpaces

for IsQuotientWeylModule, 11
for IsSubQuotientWeylModule, 11
for IsSubWeylModule, 11
for IsWeylModule, 11

Generator

for IsQuotientWeylModule, 16
for IsWeylModule, 16

Generators

for IsSubQuotientWeylModule, 21
for IsSubWeylModule, 19

GensNextSocle

for IsSubWeylModule, 20
GensSocleLayers

for IsQuotientWeylModule, 16
for IsWeylModule, 16

IsAmbiguous

for IsQuotientWeylModule, 14
for IsSubWeylModule, 14

32

WeylModules 33

for IsWeylModule, 14
IsQuotientWeylModule

for CategoryCollec-
tions(IsLeftAlgebraModuleElement),
8

IsSchurAlgebraWeylModule

for IsWeylModule, 26
IsSubQuotientWeylModule

for CategoryCollec-
tions(IsLeftAlgebraModuleElement),
8

IsSubWeylModule

for CategoryCollec-
tions(IsLeftAlgebraModuleElement),
8

IsWeylModule

for CategoryCollec-
tions(IsLeftAlgebraModuleElement),
8

IsWithin

for IsSubQuotientWeylMod-
ule,IsLeftAlgebraModuleElement,
22

for IsSubWeylMod-
ule,IsLeftAlgebraModuleElement,
19

MaximalSubmodule

for IsWeylModule, 17
MaximalVectors

for IsQuotientWeylModule, 14
for IsQuotientWeylModule,IsList, 14
for IsSubWeylModule, 14
for IsSubWeylModule,IsList, 14
for IsWeylModule, 14
for IsWeylModule,IsList, 14

Mullineux

for IsPosInt, IsList, 30

NextSocle

for IsSubQuotientWeylModule, 22
for IsSubWeylModule, 19

pRegular

for IsPosInt, IsList, 29
pRegularPartitions

for IsPosInt, IsPosInt, 29

pRestricted

for IsPosInt, IsList, 29
pRestrictedPartitions

for IsInt, IsInt, 30
PrintSocleLayers

for IsQuotientWeylModule, 16
for IsWeylModule, 16

ProductCharacter

for IsList,IsList, 24

QuotientWeylModule

for IsSubWeylModule, 7

SchurAlgebraDecompositionMatrix

for IsInt, IsInt, IsInt, 27
SchurAlgebraWeylModule

for IsInt, IsList, 26
SimpleCharacter

for IsPosInt, IsList, IsString, IsPosInt, 24
SimpleQuotient

for IsWeylModule, 17
SocleLengthTwoQuotient

for IsSubWeylModule, 20
SocleSeries

for IsQuotientWeylModule, 17
for IsWeylModule, 17

SocleWeyl

for IsQuotientWeylModule, 17
for IsWeylModule, 17

SubWeylModule

for IsQuotientWeylMod-
ule,IsLeftAlgebraModuleElement,
7

for IsQuotientWeylModule,IsList, 7
for IsSubQuotientWeylMod-

ule,IsLeftAlgebraModuleElement,
7

for IsSubQuotientWeylModule,IsList, 7
for IsSubWeylMod-

ule,IsLeftAlgebraModuleElement,
7

for IsSubWeylModule,IsList, 7
for IsWeylMod-

ule,IsLeftAlgebraModuleElement,
7

for IsWeylModule,IsList, 7
SubWeylModuleDirectSum

WeylModules 34

for IsQuotientWeylModule,IsList, 8
for IsWeylModule,IsList, 7

SymmetricGroupDecompositionMatrix

for IsInt, IsInt, 27
SymmetricGroupDecompositionNumbers

for IsInt, IsList, 27

TheCharacteristic

for IsQuotientWeylModule, 13
for IsSubQuotientWeylModule, 13
for IsSubWeylModule, 13
for IsWeylModule, 13

TheLieAlgebra

for IsQuotientWeylModule, 13
for IsSubQuotientWeylModule, 13
for IsSubWeylModule, 13
for IsWeylModule, 13

TwoFactorQuotientsContaining

for IsSubWeylModule, 20

Weight

for IsLeftAlgebraModuleElement, 23
Weights

for IsQuotientWeylModule, 11
for IsSubQuotientWeylModule, 11
for IsSubWeylModule, 11
for IsWeylModule, 11

WeightSpace

for IsQuotientWeylModule,IsList, 12
for IsSubQuotientWeylModule,IsList, 12
for IsSubWeylModule,IsList, 12
for IsWeylModule,IsList, 12

WeightSpaces

for IsQuotientWeylModule, 12
for IsSubQuotientWeylModule, 12
for IsSubWeylModule, 12
for IsWeylModule, 12

WeightToComposition

for IsInt, IsList, 28
WeylModule

for IsPosInt, IsList, IsString, IsPosInt, 6
for IsWeylModule,IsList, 6

	Introduction
	Purpose
	Counterexample to Donkin's conjecture
	ChangeLog

	Weyl modules
	Constructors
	Filters
	Operations common to all four types
	Operations common to Weyl modules, submodules, and quotients
	Operations on Weyl modules and their quotients
	Operations on Weyl modules
	Operations on quotients
	Operations on submodules
	Operations on subquotients

	Weights and Characters
	Weights
	Characters

	Schur Algebras
	Constructor and filter
	Decomposition matrices
	Partitions

	References
	Index

