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Preface

These are my lecture notes for a first course in abstract algebra, which I
have taught a number of times over the years. Typically, the course at-
tracts students of varying background and ability. The notes assume some
familiarity with linear algebra, in that matrices are used frequently.

The main focus of the course is on group theory, with the goal of get-
ting to the Sylow theorems and the classification of finite abelian groups.
The very beginnings of ring theory are also treated here, with a focus on
commutative rings, in order to discuss the finite rings and fields inherent
in modular arithmetic. Students have little trouble understanding the ring
axioms, probably due to prior exposure to the number systems of basic
mathematics.

The organization of the material is somewhat novel, in that the main
classes of examples are introduced and studied first, before the abstract
group axioms are given. This seems to offer some advantages over the stan-
dard approach of clobbering unsuspecting students with the abstract group
axioms before they have had any experience with examples. In my expe-
rience, even very capable students find the group axioms quite difficult at
first.

Modulo preliminaries, the course starts with permutation groups, which
are defined as nonempty sets of permutations closed under products and
inverses; this of course includes the symmetric and alternating groups. Next
the dihedral groups are introduced as symmetry groups of regular polygons
and the groups of rotational symmetries of the platonic solids are also dis-
cussed briefly without proof. Next comes modular arithmetic, including
axioms for commutative rings and fields, and a proof that the ring of inte-
gers modulo n is a field if and only if n is prime. The last class of concrete
examples are linear groups, defined as nonempty sets of matrices closed un-
der products and inverses. A fairly detailed analysis of the rotation group
SO(2) is given, along with the full orthogonal group O(2) of orthogonal 2×2
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matrices.

Only then are the axioms for abstract groups introduced. By this point
students have seen enough examples of groups to be able to appreciate the
utulity value of the axiomatic approach. The rest of the course proceeds
as usual, covering all the standard main topics, including subgroups, cyclic
groups, quotients, homomorphisms, products, group actions, Sylow theo-
rems, and finite abelian groups. Brief discussions of simple groups, compo-
sition series, and generators and relations are included.

I wish to thank all the students over the years who used various incar-
nations of these notes; their feedback has been incorporated into the notes
in many ways.
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Chapter 0

Preliminaries

1 Logic

We start by discussing some basic terminology from mathematical logic.
These definitions and notation are used throughout mathematics.

1.1 Definition. In mathematics, a statement is an assertion which is either
true or false.

1.2 Definition. A conditional statement is any statement of the form “if
P then Q” where P and Q are statements. Conditional statements are also
called implications. The implication “if P then Q” is also commonly written
as “P implies Q” or “P =⇒ Q.”

To prove an implication P =⇒ Q, we assume P is given (the hypoth-
esis) and show by logical deduction that one can derive Q (the conclusion)
from the given hypothesis. Such an approach is called a direct proof of the
implication.

1.3 Definition. A statement of the form “P if and only if Q” is called
a biconditional or equivalence. It is commonly written as “P iff1 Q” or
“P ⇐⇒ Q.” By definition, P ⇐⇒ Q means that both P =⇒ Q and
Q =⇒ P .

Thus, to show that “P if and only if Q” is true you must prove two
conditionals: that P =⇒ Q and that Q ⇒ P . The implication Q =⇒ P
is called the converse of P =⇒ Q. So proving the equivalence P ⇐⇒ Q

1Thus, iff is an abbreviation for the phrase “if and only if.”
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amounts to proving both the implication P =⇒ Q and its converse Q =⇒
P .

Be careful about converses. It is a fallacy to assume that if P =⇒ Q
then also Q =⇒ P . This is often false. For instance, the implication
“all dogs are mammals” is true, but its converse “all mammals are dogs” is
plainly false.

1.4 Remark. By standard convention, all definitions in mathematics are
considered to be biconditionals, even if not stated as such. Thus, in a defini-
tion, the word if should always be interpreted as if and only if.

1.5 Definition. The contrapositive of P =⇒ Q is (¬Q) =⇒ (¬P ). Here,
the symbol ¬ means “not.” I.e., ¬P means “not P .”

It is a well known that every implication is logically equivalent to its con-
trapositive, and mathematicians routinely use that fact without comment.

1.6 Example. To prove the implication: (n2 is odd) =⇒ (n is odd), it
suffices to show the contrapositive statement: (n is even) =⇒ (n2 is even).
The contrapositive is easy to see by a direct proof, as follows. If n is an even
integer then n = 2k for some integer k, and hence n2 = 4k2 = 2(2k2) = 2m
is even, because m = 2k2 is an integer.

1.7 Definition (quantifiers). The symbol ∀ is the universal quantifier. It
means “for all.” The symbol ∃ is the existential quantifier. It means “there
exists.”

A universal statement is one which is universally quantified. For exam-
ple, anything of the form ∀x, P (x). By definition, this is true whenever P (x)
is true for all possible values of x (in some domain).

An existential statement is one which is existentially quantified. For
example, anything of the form ∃x, P (x). By definition, this is true whenever
P (x) is true for at least one value of x.

Exercises

1.1. Prove that if n2 is odd then n must be odd.

1.2. Prove that if n3 is odd then n must be odd.

1.3. Prove that n is even if and only if n2 is even.

1.4. Prove that n is odd if and only if n2 is odd.

1.5. Prove that for all real numbers x, x2 ≥ 0.

1.6. Prove that there exists a complex number whose square is −2.
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2 Sets

Next we discuss the basic notions of set theory, which are used throughout
mathematics. We take the naive approach, in which the notion of a set is
left somewhat imprecise.

2.1 Definition. The naive concept is that a set is a collection of elements,
which is determined by its elements, in the following sense: two sets are
considered to be equal if 2 they have precisely the same elements. Order of
the elements doesn’t matter, and in a set duplicates are not allowed.

In computer science the concept of a list is quite important, and one
might get the impression that lists are the same thing as sets. This is
erroneous, however, since a list can have repetitions and order matters,
while a set cannot have repetitions and order doesn’t matter.

2.2 Remark. There are inherent difficulties with this naive concept of set;
see the discussion of Russell’s paradox below. Rather than allowing a set to
be any collection of elements, in order to avoid paradoxes we should only
allow collections which are not “too big” in a certain sense. Fortunately,
most of the sets we deal with in basic mathematics are not too big, so in
practice we don’t worry very much about this issue.

2.3 Definition. If A is a set and a is one of its elements then we write
a ∈ A (i.e., ∈ means “is in”). If b is not an element in the set A then we
write b /∈ A (i.e., /∈ means “is not in”).

2.4 Definition. A set is called finite if it has finitely many elements. The
number of distinct elements is called the cardinality of the set. Usually we
write |A| for the cardinality of a set A.

A set is infinite if it is not finite, and in that case we can write |A| = ∞.3

2.5 Definition. The empty set or null set is the set ∅ with no elements.
Of course the cardinality of the empty set is zero: |∅| = 0. The empty set
may also be written as { }.

Often we write a set by listing its elements. Thus A = {2, 5, 1, 9} is
the set consisting of the elements 1, 2, 5, 9. We could also correctly write

2We follow the convention of 1.4 here. Since we are making a definition, the word “if”
means “if and only if” in this context.

3There is a whole theory of infinite cardinals (due to Georg Cantor), but for our
purposes it is usually not necessary to distinguish between different orders of infinity.
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A = {1, 2, 5, 9} since only the elements, and not their order, is important.
So for this set A it is correct to write 2 ∈ A, 3 /∈ A.

For infinite sets we sometimes use the . . . notation, to indicate that
the displayed pattern continues as indicated. For example, the set written
{1, 3, 5, 7, 9, . . . } stands for the set of all odd natural numbers and the set
{0,±2,±4,±6, . . . } is the set of all even integers.

2.6 Definition (set builder notation). Often we define sets by listing some
condition for membership in the set. This is sometimes called set builder
notation. If P (x) is some condition on x then the set

{x | P (x)} = {x : P (x)}

should be read as “the set of all x such that P (x) is true.” In particular,
the equivalent symbols | and : usually mean “such that” when they appear
inside sets.

2.7 Definition (some standard sets of numbers). The following notations
have become the standard for various common sets of numbers used in much
of mathematics:

N = {0, 1, 2, 3, 4, . . . } natural numbers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } integers

Q = {m
n | m,n ∈ Z, n ̸= 0} rational numbers

R = real numbers

C = {a+ bi | a, b ∈ R} complex numbers

where it is understood that i2 = −1. (The number i is called the imaginary
unit.)

2.8 Examples. (a) {x ∈ R | 1 < x ≤ 3} defines the interval (1, 3].

(b) {2k + 1 | k ∈ N} is the set of all odd natural numbers.

(c) {x ∈ R : x2 − 4 = 0} is the set of all real numbers x satisfying the
equality x2 − 4 = 0. As we know, this is just the set {2,−2}.

Russell’s paradox. Bertrand Russell pointed out the problem in trying
to define the following set:

X = {A | A /∈ A}.

The set X is the set consisting of all sets which are not elements of them-
selves. There are lots of such sets, so X is really big. Then Russell asked
the question: Is X ∈ X?
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It turns out that this question has no answer, since it contradicts itself!
If we assumeX ∈ X, thenX /∈ X and we have a contradiction. On the other
hand, if we assume X /∈ X then X ∈ X and we again have a contradiction.
Since either X ∈ X or X /∈ X we cannot avoid a contradiction if X exists
as a set.

Because of this paradox, and others like it, it has been found necessary to
exclude certain “large” sets from the realm of set theory. It turns out that to
give a precise definition of the notion of a set, which avoids such paradoxes
and contradictions, is indeed a very difficult problem. This problem was
solved by Russell and Whitehead in their tome Principia Mathematica. To
find out more on such matters, see a decent modern text on set theory.

The sets that we use in ordinary mathematical discourse are almost
always small enough to be free of such difficulties, so in practice we usually
don’t need to worry very much about this problem. In general, so long as a
given set can be realized as a subset of some existing set, things are okay.

Exercises

2.1. Is it true that {0, 10, 0, 1, 10, 8, 1, 10} = {0, 1, 8, 10}? Explain.

2.2. Is it true that {1, 2, 3, 4} = {4, 3, 2, 1}? Explain.

2.3. Is it true that {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}} = {1, 2, 3}? Explain and
justify.

2.4. Find the cardinality of the following sets:

(a) {0, 10, 0, 1, 10, 8, 1, 10}.
(b) {1, 2, 3, 4}.
(c) {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}}.
(d) Z.

2.5. (a) Is 1 ∈ {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}}? Explain.

(b) Is {1} ∈ {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}}? Explain.

2.6. (a) Is 1 ∈ {1}? Explain.

(b) Is 1 ∈ {{1}}? Explain.

(c) Is ∅ ∈ {1}? Explain.

2.7. Let A = {1, 2, 3, 4, 5, 6}. Compute B = {4n − 1 | n ∈ A}. What is |A| and
|B|?

2.8. Is {3n | n ∈ Z} = {0,±3,±6,±9, . . . }? Explain.
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3 Set operations

We now consider the basic relations among sets as well as some fundamental
operations on sets.

3.1 Definition (subset). We say that A is a subset of B (written A ⊂ B
or equivalently A ⊆ B) if x ∈ A =⇒ x ∈ B.

We also sometimes say “A is contained in B” as a synonym for “A is a
subset of B.”

Note that the statements A ⊂ B and A ∈ B do not have the same
meaning. Note also that by definition A ⊂ A: every set is a subset of itself.
Also, ∅ ⊂ A; i.e., the empty set is a subset of every set.

3.2 Remark. By definition, B ⊃ A ⇐⇒ A ⊂ B. Thus, the symbol ⊃
means “contains.”

3.3 Definition (proper inclusions). If A ⊂ B but A ̸= B then we will write
A & B. In this case we say that A is a proper subset of B, or that A is
strictly contained within B.

3.4 Theorem (set equality). Let A,B be sets. Then A = B if and only if
both A ⊂ B and B ⊂ A.

This theorem is often used in proofs to show equality of two sets. In
other words, to prove that A = B, you have to prove two things: that
A ⊂ B and B ⊂ A.

We allow sets whose elements are themselves sets. Let A be a set. We
distinguish between the set A and {A}, which is the set with one element,
A. The latter object is the set consisting of the set A, and that is different
from A itself.

Thus if A is a set, we can form the set {A, {A}}, the set whose elements
are A and {A}. As another example along these lines, consider the set
X = {1, {1}, {1, 2}}. Then X has 3 elements. It is true that 1 ∈ X, but
the statement 2 ∈ X is false: 2 is part of the third element, but it is not
an element. These structural distinctions may seem pedantic but they are
quite important.

3.5 Definition (union of sets). The union or join of a collection of sets is
the set whose elements are obtained by joining together all the elements in
the collection. The union of two sets A,B is written as A∪B. Formally, we
can write

A ∪B = {x | x ∈ A or x ∈ B}
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using the set-builder notation. More generally, if A1, A2, . . . , An are sets
then

n⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪An = {x | x ∈ Ai, for some i}.

Even more generally, if we have a family Ai of sets, where i varies over all
the elements of some given set I, then we can write⋃

i∈I
Ai = {x | x ∈ Ai, for some i ∈ I}.

In this context, the set I is called an indexing set.

3.6 Definition (intersection of sets). The intersection ormeet of a collection
of sets is the set of elements common to all sets in the collection. The
intersection of two sets is written as A ∩B. Formally,

A ∩B = {x | x ∈ A and x ∈ B}.

More generally, if A1, A2, . . . , An are sets then

n⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩An = {x | x ∈ Ai, for all i = 1, . . . , n}.

More generally still, if we have a family Ai of sets, where i varies over all
the elements of some given indexing set I, then we write⋂

i∈I
Ai = {x | x ∈ Ai, for all i ∈ I}.

Two sets A,B are said to be disjoint if their intersection is the empty
set.

3.7 Definition (complements of sets). If A and B are given sets the com-
plement of B in A is the set

A−B = A \B = {x ∈ A | x /∈ B}.

In words, it is the set of all elements of A which are not elements of B.

3.8 Definition (products of sets). Let A, B be sets. Then their Cartesian
product is the set

A×B = {(x, y) : x ∈ A and y ∈ B}.

Elements of A × B are called ordered pairs since order is important: (x, y)
is usually different from (y, x).
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In case the two sets are the same set, we often write A2 in place of A×A.

This construction should look familiar. For instance, the set R2 is the
set of points in the standard Euclidean plane.

3.9 Definition (products of sets). More generally, if A1, A2, . . . , An are
sets then we can form their cross product, the elements of which are called
ordered n-tuples. Formally,

A1 × · · · ×An = {(x1, x2, . . . , xn) | xi ∈ Ai for all i = 1, . . . , n}.

Note that in an ordered n-tuple the order is important. Elements of
cross products are not sets, they are ordered tuples.

The special case A × A × · · · × A in which all the Ai are the same set
A is often written An, where n is the number of sets in the cross product.
Thus, for example, we have R3 = R× R× R = {(x, y, z) | x, y, z ∈ R} (this
is Euclidean 3-space).

Exercises

3.1. Let A = {1, 3, 5, 7}, B = {2, 4, 6, 8}, C = {1, 2, 3, 4, 3, 2, 1}. Find:
(a) A ∩ C and A ∪ C.

(b) A− C and C −A.

(c) A−B and B −A.

(d) A ∩B ∩ C and A ∪B ∪ C.

(e) (A ∪B)− C and C − (A ∪B).

3.2. (a) Is it true that {1, 2, 3} ⊂ {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}}? Explain.

(b) Is it true that {{1}} ⊂ {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}}? Explain.

(c) Is it true that {{1}, {1, 3, 2}} ⊂ {{1, 2, 3}, {3, 2, 1}, {1}, {2}, {3}}? Ex-
plain.

3.3. Explain why Z ⊂ Q ⊂ R ⊂ C.
3.4. (a) Show that {4n+ 1 | n ∈ Z} = {4m− 3 | m ∈ Z}.

(b) Show that {4n+ 1 | n ∈ Z} = {4m+ 9 | m ∈ Z}.
3.5. Show that {2n | n ∈ Z} ∩ {3n+ 7 | n ∈ Z} = {6k + 4 | k ∈ Z}.
3.6. Suppose that A,B are subsets of some bigger set X. Write Ac for the

complement of A in X (so Ac = X −A). Prove that B −A = B ∩Ac.

3.7. Suppose that A,B,C are subsets of some bigger set X. Write Ac for the
complement of A in X (so Ac = X −A). Prove that:

(a) (A ∩B)c = Ac ∪Bc.

(b) (A ∪B)c = Ac ∩Bc.

(c) (A ∩B ∩ C)c = Ac ∪Bc ∪ Cc.
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(d) (A ∪B ∪ C)c = Ac ∩Bc ∩ Cc.

3.8. (a) Show by example that it is not always true that A×B = B×A for sets
A,B.

(b) Is it ever true that A×B = B ×A? Justify your answer with proof.
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4 Relations

Relations appear all over mathematics, and are also important in computer
science. For instance, relational databases are based on the mathematical
idea of relations.

4.1 Definition. Let A be a given set. A relation on A is a subset R of
A×A. Often when R is a relation on A we write xRy instead of (x, y) ∈ R
in order to suggest the idea that x is related to y (by the relation R).

Thus a relation is nothing but a set of ordered pairs. But that is not
usually how we think about it. Usually we prefer to visualize the idea behind
the ordered pairs instead of the set of ordered pairs.

4.2 Example. On the usual set R of real numbers, we have the usual
inequality relations: <, ≤, >, ≥. We could define < as {(x, y) | y −
x is positive}, and so on.

One can also widen the definition of relation to cover two sets. Thus,
a subset R of A × B could also be called a relation from A to B by some
authors.

4.3 Definition. Let R be a relation on a set A. We say that R is an
equivalence relation if the relation R satisfies

reflexivity: xRx,
symmetry: xRy implies yRx, for all x, y ∈ A
transitivity: xRy and yRz implies xRz, for all x, y, z ∈ A.

The equivalence class [x] of x ∈ A is defined by [x] = {y ∈ A | xRy}.

If R is an equivalence relation, one can show that [x] = [y] ⇐⇒ xRy.
Thus, two equivalence classes either coincide or are disjoint.

4.4 Definition. A partition of a set A is a collection of subsets {Pi}i∈I of
A such that:

(a) the subsets are pairwise disjoint: i ̸= j implies Pi ∩ Pj = ∅.

(b) the union is all of A:
⋃

i∈I Pi = A.

4.5 Theorem (fundamental theorem of equivalence relations). Any equiv-
alence relation on a set A induces a partition of A into equivalence classes.
Conversely, any given partition of A determines an equivalence relation for
which the given partition is the induced one.
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4.6 Example. Consider the set P of all living people on earth. Define a
relation R on the set P by declaring that xRy if and only if x, y have the
same age (in years). It is easy to check that R is an equivalence relation of
the set P . The equivalence classes are just a way of grouping people by their
age: all 4-year olds would be one such equivalence class. The 18-year olds
form another class. Obviously different classes are disjoint, and the union
of all the classes is P .

Such “classifications” are what equivalence relations describe.

Exercises

4.1. Let < be the usual “less than” on the set R of real numbers. That is, for
real numbers x, y we write x < y if and only if x is less than y.

(a) Is < reflexive? Explain.

(b) Is < symmetric? Explain.

(c) Is < transitive? Explain.

(d) Is < an equivalence relation on R? Explain.

4.2. Same as the previous questions, except for ≤ in place of <.

4.3. Define a relation R on the set Z by declaring that aRb if and only if a − b
is even.

(a) Prove that R is an equivalence relation on the set Z.
(b) Describe the equivalence classes. How many equivalence classes are
there?

4.4. Define a relation R on the set Z× (Z− {0}) by declaring that (a, b)R(c, d)
if and only if ad = bc.

(a) Prove that R is an equivalence relation on the set Z× (Z− {0}).
(b) Describe the equivalence classes. [Hint: Think about representing ratio-
nal numbers by fractions.]

4.5. Let S be the set of all infinite sequences (an) = (an)
∞
n=1 of real numbers.

Define a relation ∼ on S by declaring that (an) ∼ (bn) if and only if there ex-
ists some N such that an = bn for all n ≥ N . Show that ∼ is an equivalence
relation on the set S.
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5 Functions

Functions are special types of relations in which images are unique. Func-
tions between sets are used throughout mathematics, so it is important to
know the precise definitions collected here.

5.1 Definition. Let A, B be two given sets. A function f from A to B is a
rule which assigns to each element x ∈ A a unique element f(x) ∈ B. The
element y = f(x) is called the image of x.

If f is a function from a set A to a set B then A is called the domain
of the function and B is called the co-domain. People write f : A → B to
indicate that f is a function mapping A to B.

The word mapping is a synonym for function. Sometimes it is shortened
to map.

The uniqueness part of the above definition is crucial. If f(x) is not
necessarily uniquely determined by the rule then we say that f is not well-
defined. For example, consider the rule f which defines y = f(x) to be the
solution y to the equation y2 = x, for every real number x. This is not
well-defined as a function from R into R, because when x > 0 the equation
y2 = x always has two solutions.

I emphasize that the definition of function just given says nothing at
all about equations or formulas. While we can, and very often do, define
functions in terms of some formula, formulas are NOT the same thing as
functions. The concept of function is much more general.

For instance, the equation y = f(x) = x2 − 1 defines a function from R
to R. This function is given by a formula. However, consider the function
D such that D(t) is the temperature at time t at a certain chosen location
in Chicago. Can you write down an explicit formula for this function? How
about the function DOW(t) which gives the closing value of the Dow–Jones
industrial average, day-by-day?

5.2 Definition (image and preimage). Suppose f : A → B.

(a) Image of a subset of A. If S ⊂ A then

f(S) = {f(x) | x ∈ S};

is called the image of S (under the mapping f). By definition, f(S) ⊂ B.

(b) Preimage of a subset of B. Given T ⊂ B, we have

f−1(T ) = {x ∈ A | f(x) ∈ T};

this set is called the preimage or inverse-image of T .
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The set f(A), which is the set of all outputs of the function f , is called
the image or range of f , sometimes denoted by im f or Im f .

5.3 Definition (surjection). Let f : A → B be a mapping from A to B.
We say that f is surjective if the image equals the co-domain; in other words
if f(A) = B. We also say that f maps A onto B, or that f is onto, in that
case.

For example, the rule f(x) = x2 defines a mapping from R to R which
is not surjective since f maps R into R but not onto R, since obviously you
can’t get any negative real numbers by squaring real numbers.

However, the rule f(x) = 7x − 23 defines a surjective mapping R → R,
since every real number y is obtainable as the image of some real x.

If the mapping f is surjective then we also say that f is a surjection.

5.4 Definition (injection). We say that f : A → B is injective if the
preimage of every point in the image consists of a single point in the domain.
To say it another way: f is injective if x1 ̸= x2 implies that f(x1) ̸= f(x2).
Injective functions are also called one-to-one.

For example, the rule f(x) = x2 defines a mapping from R to R which
is NOT injective since it is a two-to-one mapping: every y except 0 has two
elements in its preimage.

Injective mappings are also called injections.

5.5 Definition (bijection). Let f : A → B be a mapping. We say that f
is bijective if it is both surjective and injective. Bijections always set up a
one-to-one correspondence between the domain and co-domain.

5.6 Definition (composition of functions). Let f : A → B and g : B → C
be functions. Then we can define a new function h : A → C by the rule:
h(x) = g(f(x)). The function h so defined is called the composite of g and
f , and we write h = g ◦ f . Sometimes, by abuse of notation, we will simply
write h = gf for the composite function.

Note the functional composition is not commutative: f ◦ g ̸= g ◦ f . It is
associative, however: h ◦ (g ◦ f) = (h ◦ g) ◦ f for any functions f, g, h such
that the various composites are defined.

5.7 Definition (identity function). Let A be a given set. The identity
function on A is the function id such that id(x) = x for all x ∈ A. If we
must specify the underlying set A then we write idA or sometimes 1A.
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5.8 Definition (invertible functions). Let f : A → B be a function mapping
A to B. We say that f is invertible if there exists another function g : B → A
such that f ◦ g = idB and g ◦ f = idA. When this holds, the function g is
called the inverse of the function f , and is written as f−1.

Note that f ◦ g = idB if and only if f(g(y)) = y for all y ∈ B. Similarly,
g ◦ f = idA if and only if g(f(x)) = x for all x ∈ A.

5.9 Example. The function f : R → R defined by the rule f(x) = 2x − 7
is invertible. What is its inverse?

5.10 Theorem (fundamental theorem of invertible functions). A function
is invertible if and only if it is bijective.

5.11 Definition. If f : A → B is a function with image I then we can
always regard f as a mapping from A into T where T is any set such that
I ⊂ T ⊂ B. This is called restricting the co-domain. We can always shrink
the co-domain to any such T .

Strictly speaking, we get a new function when we do this, but people
often use the same symbol f for this new function, by abuse of notation.

Note that every function always gives us (by restriction) a surjection
onto its image. More precisely, if f : A → B is a function from A to B and
if I = f(A) is its image, then the restriction f : A → I is a surjection.

5.12 Definition. Suppose that f : A → B is a function. Given any subset
S ⊂ A we can define a new mapping f|S : S → B by the same rule as for f :
f|S(x) = f(x) for all x ∈ S. This is called restricting the domain.

We usually need to use a different notation for such a function, in order
to avoid confusion.

A familiar example of the use of domain restriction in basic calculus is
when you restrict the domain of the sine or cosine function in order to make
them invertible. Without restriction of the domain, the inverse sine and
cosine functions would not exist.

Exercises

5.1. Let f : N → N be given by the rule f(x) = x2. Compute both the image
and preimage of the set {1, 2, 3, 4}.

5.2. Show that a mapping f : A → B is injective if and only if f(x1) = f(x2) ⇒
x1 = x2.
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5.3. (a) Show that a mapping f : A → B is injective if and only if there exists a
mapping g : B → A such that g ◦ f = idA.

(b) Show that a mapping f : A → B is surjective if and only if there exists
a mapping g : B → A such that f ◦ g = idB .

5.4. Give an example of mappings f : Z → Z, g : Z → Z such that g ◦ f = idZ
but f is not invertible.

5.5. Let f : A → B be a function and let S, T be subsets of A. Show that
f(S ∪T ) = f(S)∪ f(T ) and that f(S ∩T ) ⊂ f(S)∩ f(T ). Give an example
to show that f(S ∩ T ) need not coincide with f(S) ∩ f(T ).

5.6. Let f : A → B be a function and let U, V be subsets of B. Show that
f−1(U ∪ V ) = f−1(U) ∪ f−1(V ) and that f−1(U ∩ V ) = f−1(U) ∩ f−1(V ).

15



Chapter 1

Permutation Groups

6 Permutations

Lagrange and Galois studied permutations among the roots of polynomials
as a way of understanding solutions of polynomial equations. This eventually
led to what is now called group theory.

6.1 Definition. A permutation of a set X is a bijection X → X. Write SX
for the set of all permutations of X; i.e.,

SX = {σ : X → X | σ is a bijection}.

In the special case X = n := {1, 2, . . . , n} we write Sn instead of SX .

So Sn is the set of all permutations of the numbers from 1 to n. We can
think of it as the set of all permutations of any n things, since we can always
assign numbers from 1 to n to those things.

If X is a finite set of n elements, then the number of permutations of X
is n!, the factorial of n. So the cardinality |Sn| = n!. If X is an infinite set
then SX is also infinite.

6.2 Definition. If σ ∈ Sn, then we can depict the permutation by writing

σ =
(

1 2 ··· n
σ(1) σ(2) ··· σ(n)

)
.

This is called the two-line notation for a permutation.

Read down the columns to see images of elements from the top row
sitting in the corresponding position in the bottom row. In other words, if α
maps i to j then we put i over j in the ith column of the two-line notation.
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6.3 Example. α = ( 1 2 3 4 5
4 1 3 5 2 ) is the permutation which maps 1 → 4, 2 → 1,

3 → 3, 4 → 5, and 5 → 2. Note that 3 is a fixed point for α.

6.4 Definition (permutation diagrams). Permutations can also be expressed
by diagrams. A diagram is a directed graph with 2n vertices and n edges,
with the vertices arranged in two rows of n each, such that each edge con-
nects a single vertex in the top row to a single vertex in the bottom row.
The vertices on the top and bottom rows are numbered 1 to n in order from
left to right. Then the diagram depicts the permutation α that maps i to j
if and only if there is an edge connecting vertex i in the top row with vertex
j in the bottom row.

6.5 Example. We can express the permutation α in the previous example
by the diagram

α = ( 1 2 3 4 5
4 1 3 5 2 ) =

r
r

r
r

r
r
r

r
r
r .

Technically, the edges should all have arrows pointing down, but since all
the arrows point in the same direction, it is customary to omit them. You
should be able to read the diagram as a bijection by reading the edges from
top to bottom as defining images of each numbered vertex.

6.6 Definition (multiplication of permutations). Given two permutations,
say α, β ∈ Sn, we can get a new permutation α ◦ β ∈ Sn by the usual
composition of functions. Convention: We usually simplify notation and
write the composite α ◦ β as the “product” αβ. With this convention, we
have to read such products as composites.

Thus, α ◦ β is the bijection defined by the rule (α ◦ β)(j) = α(β(j)) for
all j ∈ n. In terms of the above convention, this reads as (αβ)(j) = α(β(j)).

We know that αβ = α◦β is another permutation because the composite
of two bijections is always a bijection.

Let me remind you that composition of functions is not always commu-
tative. That is, if f, g are functions then it can happen that f ◦ g ̸= g ◦ f .
Since permutations are functions, this also applies to permutations. So for
permutations α, β ∈ Sn it can happen that αβ ̸= βα.

6.7 Example. If α = ( 1 2 3 4 5
2 4 1 5 3 ) and β = ( 1 2 3 4 5

3 1 4 5 2 ) are defined in terms of
the two-line notation then we have

αβ = ( 1 2 3 4 5
2 4 1 5 3 ) (

1 2 3 4 5
3 1 4 5 2 ) = ( 1 2 3 4 5

1 2 5 3 4 ) .

17



On the other hand, if we do the product the other way around we obtain

βα = ( 1 2 3 4 5
3 1 4 5 2 ) (

1 2 3 4 5
2 4 1 5 3 ) = ( 1 2 3 4 5

1 5 3 2 4 ) .

You should check these results yourself to make sure that you understand
the example. Notice that αβ ̸= βα in this example.

In particular, you need to read αβ = α ◦ β as α of β, which is the
same as β followed by α. In a composition α ◦ β, which is defined by
(α ◦ β)(j) = α(β(j)), the second function is the first to be applied to the
argument.1

6.8 Example. Multiplication of permutations can also be calculated using
permutation diagrams. For instance,

α

r
r
r

r
r

r
r

r
r

r
β

r
r

r
r

r
r
r

r
r

r
=

r
r

r
r

r
r

r
r

r
r = βα

computes βα in terms of the diagram, by reading the edges all the way from
top to bottom in the joined diagram displayed on the left above. Again,
because we are computing βα = β ◦ α, we are computing α followed by β,
so we must put the diagram of α above the diagram of β.

6.9 Definition (identity permutation). The simplest permutation in Sn is
the identity permutation, which is just the identity mapping idX on the set
X = n. We will often write id for this permutation.

6.10 Example. For instance, if n = 5 we have id = ( 1 2 3 4 5
1 2 3 4 5 ). The diagram

of this permutation is

id =

r
r

r
r

r
r

r
r

r
r .

6.11 Definition (inverse permutation). Since a permutation α is a bijec-
tion, it is always an invertible mapping. Thus α−1 exists. It is defined by
the property α−1α = id = αα−1.

6.12 Example. If α = ( 1 2 3 4 5
4 1 3 5 2 ) in the two-line notation then α−1 =

( 1 2 3 4 5
2 5 3 1 4 ). Note that αα−1 = id = α−1α.

1This confusing order reversal is a consequence of the fact that functions are normally
written on the left of their argument. It can be avoided by deciding instead to write
functions on the right of their argument.
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In terms of diagrams, the diagram of α−1 is obtained by turning the
diagram of α upside down (and reversing the direction of its arrows).

6.13 Theorem (properties of permutation multiplication). Let α, β, γ ∈ Sn.
Then:

(a) multiplication is associative: (αβ)γ = α(βγ),

(b) the identity is neutral for multiplication: α id = id α = α,

(c) inverses exist: α−1 ∈ Sn exists such that α−1α = id = αα−1.

Proof. (a) It is well known (and easy to check) that composition of functions
is associative. Since permutations are functions, composition of permuta-
tions is associative.

(b) This is obvious.

(c) We have already discussed this, in 6.11.

Another important property of permutation multiplication is: the in-
verse of a product is the product of the inverses taken in reverse order:
(αβ)−1 = β−1α−1. The proof is an exercise.

6.14 Definition (cycles and cycle notation). A permutation in Sn which
maps i1 → i2 → · · · → ir−1 → ir → i1 and which fixes all other numbers
in the set n is called an r-cycle. In the cycle notation it is written as
(i1, i2, . . . , ir).

6.15 Example. The permutation α = ( 1 2 3 4 5
1 5 3 2 4 ) is a 3-cycle in S5. In the

cycle notation we write this permutation as α = (2, 5, 4).

Note that the cycle notation is ambiguous unless n is specified. Also,
there is more than one way to write a cycle in the cycle notation, since for
instance (2, 5, 4) = (5, 4, 2) = (4, 2, 5) are all the same 3-cycle! Despite these
deficiencies, the cycle notation is extremely useful.

6.16 Remark. The identity permutation id in Sn is (by standard conven-
tion) often written as the 1-cycle (1). From now on we will usually write (1)
for the identity permutation.

The inverse of a cycle is also a cycle of the same length: it is the cycle
obtained by writing the numbers of the original cycle in reverse order. For
instance, the inverse of (2, 5, 4) is the cycle (4, 5, 2).

6.17 Definition. A 2-cycle is also known as a transposition or swap. It
simply interchanges two numbers and fixes all others. Every transposition
is its own inverse.
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6.18 Definition. Two given cycles are said to be disjoint if they have no
numbers in common.

6.19 Example. The cycles (2, 5, 4) and (3, 7, 1, 9) are disjoint, while (2, 5, 4)
and (3, 5) are not.

6.20 Theorem (disjoint cycle factorization). Any permutation can be writ-
ten as a product of disjoint cycles. Moreover, disjoint cycles commute with
one another, so the product of disjoint cycles can be taken in any order.

Proof. If all numbers are fixed by the permutation, then it is identity, and
can be expressed as a product of disjoint 1-cycles. Otherwise, let i1 be the
first number which is not fixed. It then maps to another number, say i2, and
so on. Because a permutation is a bijection on a finite set, eventually we
must reach a number ir which is mapped back to i1, so we obtain an r-cycle
(i1, i2, . . . , ir). Now continue the argument with the next number which is
not fixed by the permutation, and which has not already appeared in some
cycle. This process must terminate after finitely many steps since we are
permuting finitely many elements. This proves the first claim. The second
claim is obvious.

6.21 Example. The above proof is constructive, and highly computational,
in that it provides a procedure for computing such a product of disjoint
cycles for any given permutation. Here is an illustrative example. Let
α = ( 1 2 3 4 5 6 7 8 9

2 5 3 1 8 9 4 7 6 ). Then α sends 1 → 2 → 5 → 8 → 7 → 4 → 1, which
gives the 6-cycle (1, 2, 5, 8, 7, 4). The next number that doesn’t appear in
this cycle is 3, which is a fixed point. The next after that is 6, and α sends
6 → 9 → 6, which gives a 2-cycle (6, 9). At this point every number not
fixed by α appears in a cycle, so we are finished. The permutation α has
the cycle factorization α = (1, 2, 5, 8, 7, 4)(6, 9) = (6, 9)(1, 2, 5, 8, 7, 4). Some
people might include the 1-cycle (3) in order to emphasize the fact that 3 is
fixed, writing α = (1, 2, 5, 8, 7, 4)(6, 9)(3). This is fine, too.

It is a fundamental fact that every permutation is expressible as a prod-
uct of transpositions (not necessarily disjoint). One way to prove this uses
the following observation.

6.22 Lemma. Any r-cycle can be written as a product of (not necessarily
disjoint) transpositions.

Proof. One verifies the identity (i1, i2, . . . , ir) = (i1, i2)(i2, i3) · · · (ir−1, ir) by
direct calculation.
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6.23 Examples. 1. (3, 4, 5) = (3, 4)(4, 5).

2. (3, 6, 4, 2) = (3, 6)(6, 4)(4, 2).

It should also be noted that there is always more than one way to express
a given permutation as a product of transpositions. If σ is any permutation
and τ any transposition then σ = στ2 (because τ2 = id). Thus, if σ is
factored as a product of transpositions, then by tacking on two additional
factors of τ you have found another such factorization of σ.

Furthermore, there are other ways of factoring into transpositions that
do not arise from the formula in the lemma. For instance, check that
(3, 4, 5) = (4, 5)(5, 3).

6.24 Theorem. Any permutation can be written as a product of (not nec-
essarily disjoint) transpositions.

Proof. Combine 6.22 with 6.20.

As already noted, there are always many different ways (in fact, infinitely
many) to factor a permutation as a product of transpositions.

Exercises

6.1. Consider the permutations α = ( 1 2 3 4 5 6
3 1 5 6 2 4 ) and β = ( 1 2 3 4 5 6

6 3 4 1 5 2 ).

(a) Compute the products αβ and βα.

(b) What permutation is α−1?

(c) Compute α2 and α3.

(d) What is the smallest positive power of α which equals identity? (I.e.,
compute the order of α.)

6.2. Compute the order |β| of β = ( 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 1 5 6 2 4 13 11 9 7 10 8 14 12 ). Justify your

answer.

6.3. (a) Write out all 3-cycles in S4. How many are there?

(b) How many 3-cycles are there in Sn?
(c) For any r, how many r-cycles are there in Sn?

6.4. (a) Write the following permutation as a product of disjoint cycles:

α = ( 1 2 3 4 5 6 7 8 9
6 1 7 5 4 2 8 9 3 ) .

(b) Now write α as a product of transpositions.

6.5. Show that if α = α1α2 · · ·αk is a product of disjoint cycles, then αt =
αt
1α

t
2 · · ·αt

k. Show by an example that this may fail for products of non-
disjoint cycles.

21



6.6. (Maps on the right). Suppose we decide to write functions on the right
of their argument instead of on the left. (This is called postfix notation
in computer science.) This means that we write (x)f instead of f(x). One
usually reads (x)f as the image of x under f . In this notation, the definition
of f ◦g becomes (x)(f ◦g) = ((x)f)g. In other words, this fixes the annoying
order reversal that we see when maps are written on the left. Show that if
we adopt this convention then:

(a) (1, 2, 3) = (3, 2)(2, 1).

(b) (i1, i2, . . . , ir) = (ir, ir−1) · · · (i3, i2)(i2, i1).
(c) The product αβ can be computed by placing the diagram of α above

the diagram of β and then reading the edges from the top of α to the
bottom of β.
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7 Permutation Groups

We now come to our first examples of groups, the permutation groups.
These were first studied by Lagrange in the late 1700s. Here are the two
key definitions.

7.1 Definition. Let G be a nonempty subset of Sn.
(a) We say that G is closed under products if α, β ∈ G implies αβ ∈ G.

(b) We say that G is closed under inverses if α ∈ G implies α−1 ∈ G.

7.2 Definition. A nonempty subset G ⊂ Sn is a group of permutations,
or permutation group for short, if the set G is closed under products and
inverses.

Notice that any permutation group must contain the identity permuta-
tion, since it contains some element α (because it is nonempty) and contains
α−1 (because of closure under inverses) and thus must contain αα−1 = id =
(1) (by closure under products). Hence, if a given subset of Sn does not
include the identity permutation then it cannot be a permutation group.

7.3 Examples. 1. The set Sn itself is a permutation group, called the
symmetric group on n letters.

2. The trivial group is the group {(1)} consisting of just the identity
permutation. This group is not interesting; thus the name.

3. The group K = {(1), (1, 2), (3, 4), (1, 2)(3, 4)} is another example of a
permutation group.

7.4 Definition (order of a group). The order of a permutation group is the
number of elements in the group. In other words, the order of a group is its
cardinality as a set. If G is a group, then we always write |G| for its order.

Note that permutation groups always have finite order since they are,
by definition, subsets of some Sn, and Sn is itself a finite set. We will see
examples of groups of infinite order later.

7.5 Definition (powers of a permutation). Let α ∈ Sn be a permutation
and let m ∈ Z be a positive integer. We define:

αm = αα · · ·α (m factors)

α0 = (1) = id

α−m = α−1α−1 · · ·α−1 (m factors)
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Notice that (αm)−1 = α−m. Furthermore, αrαs = αr+s and (αr)s =
αrs for all r, s ∈ Z. So the usual laws of exponents (but only for integer
exponents) are applicable to powers of permutations.

7.6 Lemma. Let α ∈ Sn. Then there must be some positive integer p such
that αp = id.

Proof. Since the set Sn is closed under products, the set S = {α, α2, α3, . . . }
of all positive integer powers of α is contained in Sn. So the set S must be
a finite set. This implies that there must be repetition in the powers of α.
In other words, there exist distinct positive integers r, s such that αr = αs.
We may assume that r > s (otherwise we can just interchange them). Then
it follows that

αr−s = αrα−s = αsα−s = α0 = id.

Since r − s > 0, this completes the proof of the lemma.

7.7 Definition (order of a permutation). Let α ∈ Sn. The order of α
(written as order(α) or |α|) is the smallest positive integer m such that
αm = id.

Note that only verifying the property αm = id is not enough to prove
that the order of α is m. You also need to show that the positive exponent
m is minimal with respect to that property.

7.8 Example. The order of the identity id is the integer 1: |id| = 1.

7.9 Example. If α = ( 1 2 3 4 5
4 1 3 5 2 ) then |α| = 4, as you should verify by

computing the successive powers α2, α3, and α4. Since α1 ̸= id, α2 ̸= id,
α3 ̸= id, but α4 = id, it follows that 4 is the smallest positive exponent of
α giving the identity.

7.10 Proposition. Let α be a permutation. If |α| = m and αk = id for
some positive integer k then k must be a multiple of m.

Proof. Divide k by m to get an integer quotient q and remainder r, so that

k = qm+ r and 0 ≤ r < m.

Then id = αk = αqm+r = (αm)qαr = id αr = αr, so αr = id. If r > 0
then we contradict the fact that |α| = m, so it follows that r = 0 and thus
k = qm as required.

24



Since any permutation can be written as a product of disjoint cycles, the
following result enables us to easily compute the order of any permutation.
Note that if α = α1α2 · · ·αk is a product of disjoint cycles, then αt =
αt
1α

t
2 · · ·αt

k, because disjoint cycles commute.

7.11 Proposition. The order of any r-cycle is r. The order of a product
α1α2 · · ·αn of disjoint cycles is the least common multiple (lcm) of their
individual orders.

Proof. Let α = (i1, i2, . . . , ir) be any r-cycle. Then for any j < r, the map
αj sends i1 to ij and hence cannot be equal to the identity (1). On the other
hand, it is easy to check that αr = (1). This proves the first claim. The
proof of the second claim is left to you as an exercise.

7.12 Example. If α = (6, 9, 5)(2, 7, 3, 10)(1, 11) then |α| = lcm(3, 4, 2) =
12. This follows from the preceding result.

7.13 Definition (cyclic groups). Let α ∈ Sn. The smallest permutation
group containing α is called the cyclic group generated by α. This group is
often written as ⟨α⟩.

7.14 Proposition. Let α ∈ Sn, and let G = ⟨α⟩ be the cyclic group gener-
ated by α. Then G = {id, α, α2, . . . , αk−1}, where k = |α|.

Note that the order of the cyclic group G generated by α is the same
as the order of α itself: if G = ⟨α⟩ is cyclic then |G| = |α|. This is a
characteristic property of cyclic groups. The notation Ck is often used for a
cyclic group of order k.

7.15 Proposition. Let α ∈ Sn. If |α| = m then α−1 = αm−1.

Proof. αm−1 = αmα−1 = (1)α−1 = α−1.

This implies the following useful fact.

7.16 Theorem (closure under products suffices). Suppose that G is a
nonempty subset of Sn. Then G is a permutation group if and only if the
set G is closed under products.

Proof. Suppose that α ∈ G. Since G is closed under products, it is clear
that G must contain the subgroup ⟨α⟩ generated by α. So by Proposition
7.15, α−1 = αm−1 ∈ G, where m = |α|.
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Exercises

7.1. Does there exist a permutation group of order r for any given positive integer
r? Justify your answer.

7.2. Compute the cyclic group ⟨α⟩ generated by α for α = (1, 2, 3, 4) in S4. What
is the order of the group?

7.3. Let α = (i1, i2, . . . , ir) be an r-cycle. Write α2 as a product of disjoint
cycles. [You may have to distinguish the cases where r is odd or even.]

7.4. Prove the second claim in Proposition 7.11.

7.5. Let α = (1, 2)(3, 4) and β = (1, 2, 3, 4) in S4. By definition, the group
G = ⟨α, β⟩ generated by α, β is the smallest permutation group containing
both α, β. Find and list all the elements of G. What is |G|?

7.6. Let α = (1, 2) and β = (1, 2, 3) in S3. Let G = ⟨α, β⟩ be the group generated
by α, β. Show that G = S3.

7.7. (a) Show that (1, 3) = (2, 3)(1, 2)(2, 3).

(b) Show that (1, 4) = (3, 4)(2, 3)(1, 2)(2, 3)(3, 4).

(c) Prove that for j > 1 we have (1, j) =

(j − 1, j)(j − 2, j − 1) · · · (1, 2) · · · (j − 2, j − 1)(j − 1, j).

(d) Prove that for i < j we have (i, j) =

(j − 1, j)(j − 2, j − 1) · · · (i, i+ 1) · · · (j − 2, j − 1)(j − 1, j).

Part (d) shows that it is possible to write any transposition as a product of
adjacent ones; i.e., ones of the form (k, k + 1).

7.8. Prove that Sn is generated by the set {(1, 2), (2, 3), . . . , (n−1, n)} of adjacent
transpositions. [Hint: By Theorem 6.24 it is enough to show that any
transposition is expressible as a product of the ones in the given set. Now
use the result of Problem 7.7.]

7.9. (a) Show that if α = (1, 2), β = (1, 2, . . . , n) then for any 1 < i < n we
have (i, i+ 1) = βi−1α(βi−1)−1 = βi−1αβn−i+1.

(b) Prove that Sn is generated by the set S = {(1, 2), (1, 2, 3, . . . , n)}.
[Hint: Use part (a) and the result of the preceding exercise.]
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8 The sign of a permutation

We have shown that any permutation can be factored as a product of trans-
positions, but in infinitely many ways. It is time to investigate this in greater
detail.

8.1 Theorem (the identity is even). Every factorization of the identity id
as a product of transpositions must use an even number of transpositions.

This might seem obvious, but a careful proof is difficult. The proof can
be done by induction on the number of transpositions. We omit the proof,
and refer to the excellent article2 by Keith Conrad (see the bibliography at
the end).

8.2 Corollary. Let α ∈ Sn. Suppose that α = σ1 · · ·σr and α = τ1 · · · τs are
two ways of expressing α as a product of transpositions. Then the difference
r − s must be an even number.

Proof. We have id = αα−1 = σ1 · · ·σrτs · · · τ1. By the previous theorem,
r + s is even. This implies that r − s must be even. (If r − s is odd then
2r = (r + s) + (r − s) would be odd, which is absurd.)

The corollary implies that if we find one way to factor α ∈ Sn as a
product of an odd number of transpositions, then all ways of expressing α
as a product of transpositions uses an odd number of them. The same holds
if we replace “odd” by “even.” This means that the following definition
makes sense.

8.3 Definition. Let α ∈ Sn. We say that α is an odd permutation if there
is some way to express α as a product of an odd number of transpositions.
We say that α is an even permutation if there is some way to express α as a
product of an even number of transpositions. The sign of α is defined to be

sgn(α) =

{
−1 if α is odd

1 if α is even.

8.4 Examples. 1. The sign of id is 1. (The identity is even.)

2. The sign of any transposition is −1. (A transposition is odd.)

3. The sign of (1, 2, 3) = (1, 2)(2, 3) is 1. The 3-cycle (1, 2, 3) is even.

4. The sign of any r-cycle is (−1)r−1. The proof is an exercise.
2Keith Conrad, The sign of a permutation,

http://www.math.uconn.edu/ kconrad/blurbs/grouptheory/sign.pdf.

27



8.5 Theorem (sign is multiplicative). For any α, β ∈ Sn we have sgn(αβ) =
sgn(α) sgn(β).

The proof is an easy exercise.

8.6 Definition. For any n ≥ 2, the alternating group An is the set of all
even permutations in Sn.

It remains to verify that the definition makes sense. To do so, we must
show that the set An of even permutations is closed under products. This
is an exercise. Note that A1 is the empty set.

8.7 Examples. 1. A2 = {(1)}. So |A2| = 1.

2. A3 = {(1), (1, 2, 3), (3, 2, 1)}. This is the same as the cyclic group
generated by (1, 2, 3). So |A3| = 3.

3. A4 = {(1), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (3, 2, 1), (4, 2, 1), (4, 3, 1),
(4, 3, 2), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. So |A4| = 12.

3. In general, for any n ≥ 2, we have |An| = n!/2.

8.8 Proposition. |An| = n!/2 for any n ≥ 2.

Proof. Let β be any transposition, say β = (1, 2) for instance. Holding
β fixed, it is easy to check that the mapping f : An → Sn defined by
f(α) = αβ is a bijection between the disjoint sets An and Sn − An. Hence
|An| = |Sn−An|. If we write k = |An| then the fact that Sn = An∪(Sn−An)
along with the disjointness of the two sets implies that |Sn| = |An|+|Sn−An|.
In other words, n! = k + k, so k = n!/2, as required.

8.9 Remark. It can be shown that sgn(α) = (−1)I(α), where I(α) is the
number of inversions in α. By definition, an inversion occurs when i < j
but α(i) > α(j). You can count the number of inversions in α by drawing
the diagram of α and counting the number of edge crossings.

8.10 Remark. One important application of permutations is the following
closed formula for the determinant of an n× n matrix A = (aij):

detA =
∑
α∈Sn

sgn(α) a1,α(1)a2,α(2) · · · an,α(n).

This formula says that to compute the determinant one must form a product
of entries chosen one from each row and column, and then take the signed
sum of all such products.
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Exercises

8.1. Show the inverse of a permutation must have the same sign as the permu-
tation.

8.2. Prove that for any n ≥ 2 the set An of all even permutations is a group.

8.3. Let S be the set of all odd permutations in some fixed Sn. Is S a permutation
group? Why or why not?

8.4. Prove that for n ≥ 2 the order of the alternating group An is n!/2. [Hint:
Establish a bijection f from An onto the set Bn of all odd permutations in
Sn, by choosing any transposition τ and setting f(α) = τα. Show this is a
bijection, and conclude that |An| = |Bn|.]

8.5. Prove Theorem 8.5.

8.6. Find a set of generators for An, for n ≥ 3.
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Chapter 2

Symmetry Groups

9 Symmetry groups

What are groups good for, anyway? One answer is that they can be used to
quantify symmetry. Measuring symmetry is what groups do. Symmetry is
ubiquitous in nature, and is an important component of art and music. In
chemistry, symmetry groups distinguish between different molecular struc-
tures and describe properties of crystals; in physics, symmetry groups help
us understand interactions of subatomic particles. The symmetry group of
the Rubik’s cube is helpful for solving the puzzle. The original application
of symmetry groups was in the theory of polynomial equations, where Ga-
lois showed that the symmetry group of the equation determines whether
or not it can be solved in terms of radicals. We will only touch on a few
simple examples of symmetry groups. This is a complex topic, which can
be studied from several different viewpoints.

9.1 Example (rotation group of a square). A rotational symmetry of a
square is a rotation of the square which brings it back to itself; it is always
assumed that such rotations fix the center point of the square. If the square
has no marks, we would not be able to tell whether or not it was rotated.
Such rotations are said to preserve the square.

The rotation group of the square is the set of all of its rotational sym-
metries. This set is a group, because we can compose rotations by following
one by another.

How many rotational symmetries (of the square) are there? The answer
is that it depends on how we decide to count them. It is useful to number
the vertices of the square in order to keep track of the effect of rotations.
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Let’s number the vertices as follows:

12

3 4

We will call this configuration the start configuration. Let i be the rotation
by zero degrees. This rotation does nothing to the configuration, so i is
the identity rotation. Another rotational symmetry is the counterclockwise
rotation r by 90 degrees (i.e. π/2 radians), depicted below:

12

3 4

r−−−−→
41

2 3

The rotation r actually does something to the square, so it is not the same
as the identity i. The rotations r2 = rotation by 180 degrees, and r3 =
rotation by 270 degrees are also symmetries of the square. Let’s adopt the
convention that two symmetries are consider the same if and only if they
are indistinguishable from one another in terms of the numbering of the
vertices. Then r4 = rotation by 360 degrees will bring the square back to
its starting position, so r4 = i.

We have found four distinct rotational symmetries thus far: namely the
rotations i, r, r2, r3, so the rotation group of the square contains at least
the elements {i, r, r2, r3}. Are there any more rotational symmetries? The
answer is no. It is true that r−1 = rotation by −90 degrees is a symmetry,
but it is the same as the rotation by 270 degree; i.e., r−1 = r3. So r−1

is already counted. Similarly, you may think that r5 = rotation by 450
degrees is a new rotation, but since r4 = i it follows that r5 = r. So r5

is not anything new. It turns out that any rotational symmetry you might
think of is already in our list. So the rotation group of a square is the group

G = {i, r, r2, r3} = ⟨r⟩

of order 4, generated by the basic rotation r.

9.2 Example (improper symmetries). There are other symmetries of a
square besides the rotations. Let h be the reflection of the points on the
square across its horizontal axis. The effect of h can be depicted as follows:

12

3 4

h−−−−→
43

2 1

Reflections are sometimes called improper symmetries; in this parlance the
rotations would be called proper symmetries.

31



Are there any other improper symmetries of the square? Yes. There are
three other reflections:

v = reflection across the vertical axis,

d1 = reflection across the diagonal line connecting vertices 1 and 3,

d2 = reflection across the diagonal line connecting vertices 2 and 4.

It turns out that we have found them all. There are precisely four improper
symmetries of the square, namely {h, v, d1, d2}.

The improper symmetries do not form a group, however. To be a group,
a set must be closed under products and inverses, and the set {h, v, d1, d2}
of improper symmetries is not closed under products, because the square of
a reflection is the identity i and i is not in the set.

However, if we combine the proper and improper symmetries in a set,
we do obtain a group. So the set D4 = {i, r, r2, r3, h, v, d1, d2} of proper
and improper symmetries of the square is a group; it is called the symmetry
group of the square. One nice way to see that it really is a group is to work
out its multiplication table.

As already mentioned, we multiply symmetries by composition, i.e., fol-
lowing one by the other. For example, to compute the product hr means to
first do r and then do h. (Recall that hr = h ◦ r means r followed by h.)
The product hr can be depicted by:

12

3 4

r−−−−→
41

2 3

h−−−−→
32

1 4

The net result of combining the two operations in succession is the same as
the reflection d2,

12

3 4

d2−−−−→
32

1 4

so we write hr = d2. By doing similar calculations, one can work out the
full multiplication table of the symmetry group D4. This group is called a
dihedral group.

9.3 Remark. Improper symmetries can also be viewed as rotations. The
reflection of a plane figure in a given line may be regarded as a rotation of the
plane containing the figure by π radians about that line, which serves as the
axis of the rotation. For this it is necessary to work in three dimensions. The
proper rotations, on the other hand, are rotations of the plane containing
the figure. Proper rotations take place entirely in the plane, and thus do
not require three dimensions to describe.
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The following terminology, which is a basic concept, will be used fre-
quently.

9.4 Definition. Let G,H be groups. An isomorphism from G onto H is
a bijection f : G → H which preserves products (in the sense that f(ab) =
f(a)f(b) for all a, b ∈ G). We say that G is isomorphic to H (written as
G ∼= H) if there is an isomorphism f : G → H.

The fact that an isomorphism is a bijection means that if G ∼= H then
|G| = |H|. The fact that it preserves products means that the multiplication
tables for the two groups are identical, except for the names of the elements.
Of course, names are purely arbitrary labels and have no intrinsic mean-
ing, so it follows that isomorphic groups are essentially the “same” group
apart from the names of the elements. So, informally speaking, the word
“isomorphic” means “the same structure.”

The concept of isomorphism may be initially somewhat abstract, so let’s
look at a concrete example.

9.5 Example. Let G be the symmetry group of the square, as in the pre-
vious example. We can think of each symmetry in G as corresponding to
the permutation whose second row records the position in which each vertex
ends up under the motion. In short, we say that each symmetry in G can be
represented by a permutation. The representation is given in the following
table.

symmetry permutation

i (1)
r (1, 2, 3, 4)
r2 (1, 3)(2, 4)
r3 (4, 3, 2, 1)
h (1, 4)(2, 3)
v (1, 2)(3, 4)
d1 (2, 4)
d2 (1, 3)

Note that the permutations are written in terms of the cycle notation. A
bit of thought reveals that the 8 permutations in the rightmost column of
the table form a permutation group P . The function f : D4 → P which
sends the element in the left column to the corresponding permutation in
the right column defines a bijection from D4 onto P . Although it is tedious
do do so at this point, it can be checked that f preserves products. Thus f
is an isomorphism and D4

∼= P . So we may think of D4 as a permutation
group if we so desire.
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Furthermore, if we restrict the isomorphism f to the group G of proper
symmetries (the rotation group) of the square, then we obtain an isomor-
phism of G onto the permutation group H = ⟨α⟩, where α = (1, 2, 3, 4). The
group H = {id, α, α2, α3} is a cyclic group of order 4, so we have proved
that the group G of proper symmetries of a square is isomorphic to a cyclic
group of order 4.

9.6 Example. [symmetry group of the regular n-gon] Fix a regular n-sided
polygon, where n ≥ 3. The group of all symmetries of the polygon is denoted
by Dn; it is known as the dihedral group of order 2n. When n = 4 this is the
symmetry group D4 of a square.

Clearly, r = rotation by 2π/n radians preserves the polygon. Then rk =
rotation by 2kπ/n radians, and it preserves the polygon as well. Notice that
rn = i, the identity. So the proper symmetry group (the rotation group) of
the polygon is

G = {i, r, r2, . . . , rn−1} = ⟨r⟩.

We have |G| = n, so there are n proper symmetries.

There are also n improper symmetries, the reflections. Let ℓ be a line
which bisects the polygon (so that the two parts on opposite sides of ℓ are
congruent). Then reflection across the line ℓ is an improper symmetry. Let
d = the reflection that sends vertex n to itself. Then with a bit of work it
is possible to show that the set

{d, dr, . . . , drn−1}

is the set of improper symmetries of the polygon. This is due to the fact
that following a rotation by a reflection always produces another reflection,
and all reflections are produced this way. So the dihedral group Dn is the
group

Dn = {i, r, r2, . . . , rn−1, d, dr, dr2, . . . , drn−1}.

The dihedral group consists of n rotations and n reflections, for a total of
2n symmetries. Thus |Dn| = 2n.

With a bit of effort one can check that the generating rotation r and the
reflection d are related by the nice formula

rdr = d

which is equivalent to the relations rd = dr−1 = drn−1. These relations are
all one needs to compute products of elements of Dn.
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Exercises

9.1. Cut a piece of paper in the shape of an equilateral triangle and number its
vertices (on both sides) in order counterclockwise, as shown in the figure
below:

�
�
�
�
�T
T
T
T
T

2

3 1

Let r = rotation counterclockwise by 2π/3 radians; note that r3 = i is
the identity rotation. Let dj = reflection in the bisector which fixes the
point j, for j = 1, 2, 3. Then the symmetries of the triangle are D3 =
{i, r, r2, d1, d2, d3}. Using these labels, work out the multiplication table for
the symmetry group D3.

9.2. Cut a piece of paper into an isosceles triangle which is not equilateral. De-
scribe its symmetry group G, and compute its multiplication table.

9.3. In biology, it is pointed out that many animals have bilateral symmetry.
Humans are an example. The human body has bilateral symmetry (if the
arms and legs are in a symmetric position). What is the symmetry group
of the human form? How does it relate to the group G of the previous
problem?

9.4. Cut a square piece of paper and number the vertices (on both sides) as in
Example 9.1. Using this tool, make a multiplication table for the group D4.

9.5. Cut a rectangular piece of paper that is not square and number the vertices.
Using this tool, find the symmetry group of the non-square rectangle. Give
the order and a multiplication table of this group.

9.6. How much symmetry does a word have? Let’s define a word in an alphabet
A to be any finite string of symbols from A. For instance, if A = {a, b}
then w1 = abba, w2 = baba, w3 = aba, and w4 = bbb are all words over
A. Let’s define a symmetry of a word w to be any permutation of the word
w which preserves the word. For instance, the transposition (1, 3), which
interchanges the letters in positions 1 and 3, preserves the words w2, w3 but
not w1. Let G(w) be the group of all symmetries of a word w.

(a) Compute G(w) for w = w1, w2, w3, w4 as above.

(b) Which of these four words has the most symmetry?

9.7. (a) Prove that rhr = h in D4 by giving a geometric argument.

(b) Similarly, prove that rd2r = d2 in D4.

9.8. Given the fact that D5 = {i, r, r2, r3, r4, d, dr, dr2, dr3, dr4}, where r, d are
as defined in Example 9.6, compute its multiplication table. Every product
in your table must be an element of D5.

9.9. Use the equation rdr = d from Example 9.6 to prove that in Dn we have
rkd = drn−k for k = 1, 2, . . . , n− 1.

9.10. Make a table of the permutation representation of D3 = {i, r, r2, d1, d2, d3},
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using the labels introduced in Problem 9.1. Use the table to show that
D3

∼= S3. Explain how your isomorphism is defined.

9.11. Is D4
∼= S4? Justify your answer.

9.12. (a) Find the permutations representing r, d ∈ Dn, as defined in Example
9.6.

(b) Then describe a permutation group which is isomorphic to Dn.

(c) Use the isomorphism from part (b) to show that rdr = d.
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10 The Platonic solids

Now we turn our attention to symmetry groups in 3-dimensional euclidean
geometry. First, we consider the classification of regular polyhedra in solid
geometry.

Plane geometry is the study of figures in the plane R2, while solid ge-
ometry means the study of solid figures in R3 (three dimensions instead of
two). A platonic solid is a regular figure in three dimensions which is anal-
ogous to the regular n-gons in two dimensions. While in two dimensions
we have infinitely many such figures (the regular n-gon for each n) in three
dimensions there are only five regular solids.

We will assume this, as the proof would take too much of our time, but
if you want to know more, there is an excellent Wikipedia article on this
topic that not only delves into the history but also explains several proofs.
The classification of regular solid polyhedra is the final result in Euclid’s
Elements; this was the first published proof.

Here are the names of the five platonic solids, which are pictured above.
The tetrahedron is a 4-sided solid with equilateral triangles as faces; the cube
is a 6-sided solid with square faces; the octahedron is an 8-sided solid with
equilateral triangles as faces; the dodecahedron is a 12-sided solid with faces
which are regular pentagons; and finally the icosahedron is a 20-sided solid
with equilateral triangles for its faces.
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10.1 Example (proper symmetry groups of the Platonic solids). Let us
begin by describing the proper symmetries (the rotations) of the five Platonic
solids. It is already a difficult problem to count them in some effective way.

The proper symmetry group of the tetrahedron is the tetrahedral group,
denoted by T. It turns out that T ∼= A4. This can be demonstrated by con-
sidering a permutation representation of the tetrahedron. One can number
the vertices and write out the permutations corresponding to the rotations,
it turns out that these are precisely the elements of A4. The details are te-
dious. The isomorphism T ∼= A4 means in particular that |T| = |A4| = 12.
So there are 12 proper rotations of a tetrahedron.

The proper symmetries of the cube give us another group, called the
octahedral group, and written as O. We have |O| = 24.

The proper symmetries of the octahedron give us a group isomorphic
with O, so we don’t get a new group from this solid.

This is due to the fact that the cube and the octahedron are dual to one
another. To obtain the dual of a regular polyhedron, put a dot in the center
of each face, and let the dots be the vertices of a new polyhedron. This new
polyhedron is the dual of the original one. It is not hard to see that the
symmetry group of a polyhedron must be the same as the symmetry group
of its dual.

The proper symmetries of the dodecahedron give us a third symmetry
group, called the icosahedral group, and denoted by the symbol I. This
group has 60 elements; in fact it is isomorphic with the alternating group
A5. The proper symmetries of the icosahedron give us a group isomorphic
with I, so we don’t get a new group from this solid. This is due to the fact
that the icosahedron is the dual of the dodecahedron.

Summary: The proper symmetries of the five Platonic solids give us just
three new symmetry groups: T ∼= A4; O; and I ∼= A5. Two of them are
isomorphic to groups we have seen before, but the octahedral group O is
new.

10.2 Example (improper symmetries of the Platonic solids). As in the case
of regular polygons, it turns out that there are improper symmetries of all
of the regular polyhedra. They are a bit harder to describe, but it turns
out that there are always as many improper symmetries as there are proper
ones, just as in the polygon case.

When we include the improper symmetries, we get the full symmetry
group. The full symmetry group of each Platonic solid therefor has twice
as many elements as its proper symmetry group. We need to develop more
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theory in order to say more about this topic, so we leave this for now.

Exercises

10.1. Explain why two finite groups of different cardinality cannot be isomorphic.

10.2. Prove that the proper symmetry group of the tetrahedron is isomorphic to
the alternating group A4. One way to do this is via a permutation repre-
sentation. (Number the vertices of the tetrahedron and regard symmetries
as permutations of the vertices.)

10.3. Using the same idea as in the previous problem, prove that the full symmetry
group of the tetrahedron is the symmetric group S4.

10.4. Explain why the symmetry group of a regular solid must be the same as
that of its dual.

10.5. Describe the 24 proper symmetries of the cube in words.
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A Appendix: Symmetries of polynomials

Symmetry also plays an important role in the study of polynomial equations,
where the symmetry groups turn out to be permutation groups. This was
Lagrange’s motivation to study permutations. But the definition of the
symmetry group of a polynomial, which is now known as its Galois group,
is not as accessible as the symmetry group of a geometric object such as a
polygon. In this appendix, we indicate the definition only in an intuitive
way.

Our approach is difficult to use, so it turns out to be useful to replace
it by something less intuitive, but ultimately easier to work with. The
modern approach uses the theory of field extensions. Field extensions are
typically studied in a second course in abstract algebra, but they will not
be considered here.

Suppose we have an nth degree polynomial p(x) with real number coef-
ficients, say

p(x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn. (∗)

The coefficients are the real numbers cj for j = 1, . . . , n. According to
the fundamental theorem of algebra , the polynomial p(x) has exactly n
roots z1, z2, . . . , zn in the complex number system C, where we agree to list
multiple roots according to their multiplicity.

A.1 Examples. 1. The polynomial (x− 1)3 = x3 − 3x2 + 3x− 1 has three
identical roots 1, 1, 1. There is one root of multiplicity three (a triple root).

2. The polynomial (x2 − 2)2 = x4 − 4x2 + 4 has roots
√
2,

√
2, −

√
2,

−
√
2. There are two real roots, each of multiplicity two (two double roots).

3. The polynomial (x2 + 1)2 = x4 + 2x2 + 1 has roots i, i,−i,−i. There
are two non-real complex roots, each of multiplicity two (two double roots).
Here i stands for the imaginary unit in the complex number system C. (By
definition, i2 = −1.)

4. The polynomial x(x3 − 3x+ 2) = x4 − 3x2 + 2x has roots 0, 1, 1,−2.
This has one root of multiplicity two (one double root). You can verify the
roots by expanding the product x(x− 1)2(x+ 2).

For definiteness, we assume that the polynomial p(x) in equation (∗)
above has rational coefficients, and that p(x) is irreducible, meaning that
it cannot be factored into polynomials (with rational coefficients) of strictly
smaller degree. If p(x) had such a factorization, then we could deal sepa-
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rately with the two smaller polynomials in order to solve p(x) = 0, so it
makes sense to restrict our attention to irreducible polynomials.

We also assume, for simplicity, that the roots of p(x) are all distinct, i.e.,
all the roots have multiplicity one.

A.2 Definition. Under the above assumptions, we define the Galois group
of the polynomial p(x) to be the permutation group consisting of all per-
mutations of the roots {z1, . . . , zn} which preserve any algebraic relations
among them.

For a general polynomial1 of degree n there will be only trivial relations
among the roots, and thus the Galois group of the polynomial will be un-
constrained; it will thus be the full symmetric group Sn consisting of all
permutations of the n roots. For special polynomials, however, there can be
non-trivial relations among the roots imposing constraints on the permuta-
tions in the group; in such cases the Galois group of the polynomial is often
smaller than Sn. In all cases, the Galois group of an nth degree polynomial
will be a permutation group contained in Sn.

Let’s look at some concrete examples.

A.3 Example. Consider the polynomial p(x) = x4+x3+x2+x+1. Clearly
we have

p(x) = (x5 − 1)/(x− 1)

as you can see by clearing denominators and expanding the resulting prod-
uct. The roots of p(x) are z1 = e2πi/5, z2 = e4πi/5, z3 = e6πi/5, z4 = e8πi/5.
These complex numbers all lie on the unit circle in the complex plane C.
(Recall that eiθ = cos θ + i sin θ for any angle θ, where the imaginary unit i
satisfies i2 = −1.) The roots satisfy the relations

z2 = z21 , z3 = z31 , z4 = z41

and any other relations (e.g., z23 = z1) are consequences of these, along with
the fact that z5i = 1 for any i = 1, . . . , 4. We are looking for permutations
of the four roots that preserve these relations. If α is such a permutation,
then α(z2), α(z3), and α(z4) will be determined by α(z1). Now α(z1) can
be z1, z2, z3, or z4. We consider these possibilities separately.

If α(z1) = z1 then α(z2) = α(z1)
2 = z2, α(z3) = α(z1)

3 = z3, and
α(z4) = α(z1)

4 = z4. Thus α = (1) is the identity permutation.

1A general polynomial is one whose coefficients are represented by variables. For
instance, ax2 + bx + c is the general polynomial of degree 2 (the general quadratic),
ax3 + bx2 + cx+ d is the general polynomial of degree 3 (the general cubic), and so on.
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If α(z1) = z2 then α(z2) = α(z1)
2 = z22 = z4, α(z3) = α(z1)

3 = z32 = z1,
and α(z4) = α(z1)

4 = z42 = z3. Thus α is the 4-cycle (1, 2, 4, 3).

If α(z1) = z3 then α(z2) = α(z1)
2 = z23 = z1, α(z3) = α(z1)

3 = z33 = z4,
and α(z4) = α(z1)

4 = z43 = z2. Thus α is the 4-cycle (1, 3, 4, 2).

Finally, if α(z1) = z4 then α(z2) = α(z1)
2 = z24 = z3, α(z3) = α(z1)

3 =
z34 = z2, and α(z4) = α(z1)

4 = z44 = z1. Thus α = (1, 4)(2, 3).

From these calculations it follows that the symmetry group of the poly-
nomial x4+x3+x2+x+1 is the cyclic group generated by the cycle (1, 2, 4, 3).
This Galois group G has order 4.

A.4 Example. Now consider the polynomial p(x) = x4−10x2+1. We can
factor p(x) as follows:

p(x) = (x4 − 2x2 + 1)− 8x2 = (x2 − 1)2 − (x
√
8)2

= (x2 − 1− 2
√
2x)(x2 − 1 + 2

√
2x)

= (x2 − 2
√
2x− 1)(x2 + 2

√
2x− 1)

and we can find its roots by setting each quadratic factor to zero and using
the quadratic formula. The roots are z1 =

√
2 +

√
3, z2 = −

√
2 +

√
3,

z3 =
√
2−

√
3, z4 = −

√
2−

√
3. Notice that all the roots are real numbers

in this case.

The roots satisfy the relations:

z1 + z4 = 0

z2 + z3 = 0

(z1 + z2)
2 = 12

(z1 + z3)
2 = 8

(z2 + z4)
2 = 8

(z3 + z4)
2 = 12

and again all other relations are consequences of these. We want all per-
mutations of the four roots which preserve these relations. You can check
that the permutations (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), and the identity
(1) preserve the relations. No other permutation does. Thus the symmetry
group of the polynomial p(x) = x4 − 10x2 + 1 is

G = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

This is a group of order four. It turns out that it is isomorphic with the
Klein four-group.
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The cubic formula

We now consider the cubic formula, the degree three analogue of the quadratic
formula. Given a general cubic polynomial equation:

x3 − bx2 + cx− d = 0 (A.1)

with undetermined (i.e., general) coefficients, we denote its complex roots
by z1, z2, and z3. To solve the equation, we first substitute x = y+ b/3 and
obtain (after expanding) the reduced cubic equation

y3 + py − q = 0 (A.2)

where p = c − b2/3 and q = d − bc/3 + 2b3/27. The roots of the reduced
cubic are given by Cardano’s formula, first published in the year 1545.

Theorem (Cardano 1545). The roots of the reduced cubic y3 + py − q = 0
are given by

y1 =
3

√
q

2
+
√
R+ 3

√
q

2
−
√
R

y2 = ω2 3

√
q

2
+
√
R+ ω 3

√
q

2
−
√
R

y3 = ω 3

√
q

2
+
√
R+ ω2 3

√
q

2
−
√
R

(A.3)

where

R =
q2

4
+

p3

27
; ω =

−1 + i
√
3

2
.

Note that ω = ei2π/3 and therefore ω3 = 1. Moreover, ω2 + ω + 1 = 0.
The complex number ω is called a primitive cube root of unity.

To find the roots zi (i = 1, 2, 3) of the original cubic we only have to add
b/3 to the yi. This solves the original cubic equation, and the solution is in
terms of certain radicals (square and cube roots), namely those that occur
in the expressions for the yi.

Lagrange’s method for solving a cubic

In an important paper published in 1770, Lagrange noticed that the radicals
appearing in the solution to the original cubic are expressible as functions
of the roots zi themselves. This observation was the beginning of the link
between group theory and polynomial equations.
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To see this for the cube roots, we multiply the equations for the yi by 1,
ω, ω2 respectively and add, obtaining

3 3

√
q

2
+
√
R = y1 + ωy2 + ω2y3.

Thus if we substitute yi = zi − b/3 we obtain

3 3

√
q

2
+
√
R = z1 + ωz2 + ω2z3.

Denote this value by φ1, and set φ3 = ω2φ1, φ5 = ωφ1, so that we have
equalities

φ1 = 3 3

√
q

2
+
√
R

φ3 = 3ω2 3

√
q

2
+
√
R

φ5 = 3ω 3

√
q

2
+
√
R.

Going back and multiplying the equations for y1, y2, y3 by 1, ω2, ω respec-
tively, we obtain after adding them and substituting for yi = zi − b/3 the
equality

3 3

√
q

2
−
√
R = z1 + ω2z2 + ωz3.

Let us denote this value by φ2, and set φ4 = ωφ2, φ6 = ω2φ2. Then we
have equalities

φ2 = 3 3

√
q

2
−
√
R

φ4 = 3ω 3

√
q

2
−
√
R

φ6 = 3ω2 3

√
q

2
−
√
R.

We can also express
√
R in terms of the roots zi by cubing the equations for

φ1 and φ2 and subtracting. Doing this, we obtain

54
√
R = (z1 + ωz2 + ω2z3)

3 − (z1 + ω2z2 + ωz3)
3
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and after expanding, simplifying, and factoring we have

18
√
R = 3i(z1 − z2)(z1 − z3)(z2 − z3).

Thus all the radicals appearing in the formulas for the roots are expressible
as nice functions of the roots themselves.

Lagrange noticed that the roots of the general cubic are obtainable from
the six values φi (i = 1, . . . , 6), because we have the system of linear equa-
tions

φ1 = z1 + ωz2 + ω2z3

φ2 = z1 + ω2z2 + ωz3

b = z1 + z2 + z3

(A.4)

which can easily be solved for the roots z1, z2, z3 by first adding them as
they stand, then adding them after multiplying by ω2, ω, 1, and then adding
them again after multiplying by ω, ω2, 1, respectively.

Lagrange also pointed out that we can compute the six values φi as
follows. Set A1 = q/2 +

√
R and A2 = q/2 −

√
R. Then we have the

equations (φi

3

)3
= A1 (i = 1, 3, 5)

and (φi

3

)3
= A2 (i = 2, 4, 6).

In other words, the six φi are obtained by solving the equations X3 = 27A1

and X3 = 27A2. (Note that if φ is one root, say the cube root of Ai, then
the other two roots must be ωφ and ω2φ.)

Examining the expressions defining A1 and A2, we see that we can find
the Ai by solving the quadratic equation

A2 − qA− p3/27 = 0 (A.5)

for A. In this way Lagrange reduced the solution of the cubic to the solution
of a quadratic. (He called this associated quadratic equation the resolvent.)
By first solving the resolvent quadratic and then solving the system (A.4)
you can solve the cubic using Lagrange’s method.

Lagrange also similarly analyzed the general quartic (degree 4) poly-
nomial equation, reducing it to a cubic resolvent equation. He must have
been quite excited at that point, thinking that he had discovered a general
scheme to solve all polynomial equations inductively by reducing them to
a resolvent equation of degree one less than the given equation. However,
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when he looked at the very next case, the general quintic (degree 5) equa-
tion, he found that the resolvent equation had degree 6. This was a strong
indication that the general quintic might be unsolvable in terms of radicals,
and indeed N. H. Abel proved that very result in 1826.

Theorem (Abel 1826). The general quintic (degree five) polynomial equa-
tion cannot be solved in terms of radicals.

Galois further developed group theory and the theory of polynomial
equations. He was able to give necessary and sufficient conditions on the
symmetry group of an arbitrary polynomial (of any degree) for it to be
solvable in terms of radicals. His theorem is a vast generalization of Abel’s
theorem, in that it applies to polynomials of any degree. Galois discovered
the theorem in 1830 at the age of 18; he was shot and killed in a duel at the
age of 20. The theorem remained unpublished until 1846, and it wasn’t until
the late 1800s that mathematicians generally understood the significance of
his results.

Exercises

A.1. Solve the polynomial equation p(x) = 0 of A.4 by setting y = x2 and solving
the resulting quadratic equation, and then finding x by taking square roots
of y. Compare your answer with the roots of p(x) given in A.4. Can you
explain?

A.2. One strategy for solving a polynomial equation p(x) = 0 is to guess a root z1
of the equation. The guess can be checked by substitution in p(x). If p(z1) =
0 then z1 is a root. Once you have found a root z1, you can use long division
of polynomials to divide p(x) by x − z1. Since roots correspond to linear
factors, the fact that z1 is a root means that when you divide you will obtain
a quotient polynomial q(x) such that p(x) = (x − z1)q(x). Now you have
reduced the original problem, of solving p(x) = 0, to the smaller problem
of solving q(x) = 0. By repeating the method, you can eventually factor
p(x) completely into linear factors, thus solving the polynomial equation.
The problem with this strategy is that it is not always possible to guess a
solution. Thus, the method may never get started, or it may stall somewhere
along the way. However, it works in a surprising number of cases. Use this
method to solve the following cubic equations, using the given guess:

(a) x3 + 1 = 0; guess z1 = −1.

(b) x3 − 3x2 + 3x− 1 = 0; guess z1 = 1.

(c) x3 + 2x+ 3 = 0; find your own guess.

A.3. If a polynomial p(x) with integer coefficients has a rational root (a root of
the form r

s where r, s are integers), then we can always find it using the
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rational roots theorem.

Theorem. Suppose that p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, where
a0 ̸= 0 and ak ∈ Z for all k = 0, 1, . . . , n. If z1 = ± r

s is a rational root of
p(x) then s | a0 (s divides a0) and r | an (r divides an).

Use the rational roots theorem to find all rational roots (if any) of the
following polynomials:

(a) 3x3 + 4x− 7.

(b) x3 + x2 + x+ 2.

(c) x3 + 8.

A.4. Find all the roots of the polynomials in parts (a), (c) of the previous problem.

A.5. Show that the symmetry group G of Example A.4 is isomorphic with the
Klein 4-group. (The Klein 4-group was introduced in Section 7.)

A.6. Use Cardano’s formula or Lagrange resolvents to solve the following cubic
equations:

(a) x3 − 3x+ 2 = 0.

(b) x3 − 9x2 + 24x− 16 = 0.

(c) x3 + 3x2 + 6x+ 2 = 0.

(d) x3 + 3x− 4 = 0.

Show the steps of your calculations. Notice that by inspection 1 is a root
of the first and last equations; did your calculations in part (d) reveal that
fact? Do you think something is wrong?

A.7. Let ω = e2πi/n = cos(2π/n) + i sin(2π/n) be a primitive nth root of unity.
Prove that the roots of xn − 1 = 0 are the complex numbers zk = ωk for
k = 0, 1, . . . , n− 1. (This is a complete list of n distinct roots.)

(a) Compute ωn.

(b) Why is the set G of roots of the polynomial a group? What type of
group is it?

(c) If you plot the roots in the complex plane, they form the set of vertices
of what geometric figure?
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Chapter 3

Modular Arithmetic

11 Modular arithmetic

Modular arithmetic is a novel finite system of arithmetic used in public-key
cryptography in order to provide security for internet transactions. It is
also used in algebraic coding theory, the mathematical theory underlying
the encoding of information on DVDs, satellite communications, etc. And it
provides new examples of groups. We begin with some elementary number
theory.

11.1 Lemma (division algorithm). Let n be a positive integer. Let m be
any integer. There exist unique integers q, r such that

m = qn+ r and 0 ≤ r < n.

The integers q, r are called the quotient and remainder, respectively.

Proof. Recall the well-ordering principle of natural numbers, which states
that any nonempty subset of N = {0, 1, 2, . . . } must have a least element.
Let

S = {m− kn | k ∈ Z and m− kq ≥ 0}.

By construction, S is a subset of N. We need to show it is nonempty. If
m ≥ 0 then m = m − 0 · n ∈ S. If m < 0 then m − mn = m(1 − n) ≥ 0
because 1−n ≤ 0, hence m−mn is in S. In either case S is not empty. By
the well ordering principle, the set S has a least element. Let r be the least
element of S and let q be the corresponding value of k. Then m − qn = r,
so m = qn+ r. Moreover, r ≥ 0 since r ∈ S. Finally, r < n since otherwise
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r − n would be in S, contradicting the fact that r is the least element of
S.

When m is positive, the usual procedure by which we find the quotient
q and remainder r is called long division, as you undoubtedly recall.

Given a real number x, there is a unique integer k such that k ≤ x < k+1.
The integer k is called the floor of x, written as ⌊x⌋ = k. The floor function
is also known as the greatest integer function. Then for a given pair of
integers m,n we have:

q = ⌊m/n⌋, r = m− qn.

Note that when m < 0 we need to pay attention. For instance, we have
20 = 2 · 7 + 6 for 20÷ 7, but −20 = −3 · 7 + 1 for −20÷ 7.

11.2 Definition. Let n be a positive integer greater than 1. We call n the
modulus. The set Zn = {0, 1, . . . , n− 1} is called the set of residues modulo
n. This is the set of remainders for long division by n, so residue is another
word for remainder.

11.3 Definition (residue function). Let a modulus 1 < n ∈ Z be given.
Given an integer m, let q, r be the unique integers such that m = qn+r and
0 ≤ r < n. Then set resn(m) = r. The resulting function resn : Z → Zn is a
surjection from the set Z of integers onto the set Zn of residues modulo n.

We should read resn(m) as “the residue of m modulo n.” It is just the
remainder of dividing m by n, so we can always compute it by long division.

Now we define addition and multiplication on the set Zn.

11.4 Definition. Let n > 1 be a fixed integer modulus. Given residues
a, b ∈ Zn, we define

a⊕ b = resn(a+ b), a⊙ b = resn(ab).

We call the binary operations ⊕,⊙ residue addition and residue multiplica-
tion.

The residue addition and multiplication rules just defined can be remem-
bered as a two-step procedure: first, add or multiply in Z as usual, then take
the residue of the result modulo n.

11.5 Remark. We use new symbols ⊕,⊙ for residue addition and multi-
plication, in order to distinguish these new and novel operations from the
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usual ones. Eventually, we will drop the extra circle around the symbol and
use the usual addition and multiplication symbols. For now, it is useful to
use different notation in order to avoid confusion.

11.6 Example. The addition and multiplication tables for Z2 are given
below.

⊕ 0 1

0 0 1
1 1 0

⊙ 0 1

0 0 0
1 0 1

We will see later that the above addition table defines a group. This group
appears in computer science as the table defining the behavior of a binary
half-adder circuit, which is a basic circuit used in all digital computers.

11.7 Example. The addition and multiplication tables for Z4 are compiled
below.

⊕ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

⊙ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

This is more interesting. Notice that the tables are “closed” systems, in
which the combination of two elements produces another one in the set Z4.
Also notice the novel equation 2⊙2 = 0. In residue arithmetic, two nonzero
elements can multiply to produce 0, which is somewhat strange at first sight.

Residue arithmetic is also called modular arithmetic. Looking at the
addition tables (for the operation ⊕) in the above examples, we suspect that
they might be groups, because the tables “look” similar to multiplication
tables for other groups we have seen, and that is indeed the case, as we
will see later. But not so for the multiplication tables (for the operation
⊙). They are never examples of groups, because there is no inverse of 0
in the tables. Nevertheless, there is always at least one group inside the
multiplication table, if you know how to look for it. We will return to this
question later, once we have developed a better definition of group. For now,
the focus is on understanding modular arithmetic.

It is notable that we can make sense of subtraction in Zn. Here are the
appropriate definitions, which follow the same pattern as the definitions of
negatives and subtraction in the integers.
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11.8 Definition. The negative ⊖a of a residue a ∈ Zn is defined to be

⊖a =

{
0 if a = 0

n− a if a ̸= 0.

Once we have negatives, we can define subtraction in terms of adding the
negative, which is how subtraction is defined for integers and real numbers.

11.9 Definition. For any a, b ∈ Zn, we define a⊖ b = a⊕ (⊖b).

Notice that a⊕ (⊖a) = 0 and (⊖a)⊕ a = 0, for any a ∈ Zn.

11.10 Theorem. For any a, b ∈ Zn, we have a⊖ b = resn(a− b).

The proof is a straightforward exercise.

The theorem gives us another way to compute a⊖ b. Depending on the
situation, one way might be more convenient than the other, so it can be
useful to have both.

11.11 Remark (notational convention). It soon becomes tedious to al-
ways write ⊕,⊙,⊖ for the residue operations. The convention is to replace
these symbols by their corresponding uncircled symbols +, ·,− from ordinary
arithmetic. This convention results in equations such as:

5 + 5 = 0, 6 + 7 = 3, 6 · 7 = 2, 4 · 5 = 0, −6 = 4, 5− 6 = 9

all of which are valid equations in Z10. This is confusing only if you forget
that + really means ⊕, · means ⊙, and − means ⊖.

Furthermore, it is conventional to omit the multiplication symbol · in
cases where doing so will not cause confusion. So, if a, b are variables rep-
resenting values in some residue system Zn, we usually interpret ab as a · b,
just as we do in ordinary algebra.

Modular arithmetic is actually similar to arithmetic everyone already
carries out with clocks. In a standard clock, there are 12 numbers arranged
in a circle, and we all understand that 3 hours after 11 o’clock is 2 o’clock.
This is the same as the equation 11 + 3 = 2 in Z12. The only difference
between addition in Z12 and clock addition is that in Z12 we have renamed
the modulus 12 to 0.

We can visualize modular arithmetic modulo n similarly, by thinking
of a clock with the residues 0, 1, . . . , n − 1 equally spaced around its face.
Whenever we reach n hours, the clock resets to 0.
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Exercises

11.1. The floor of a real number x (written ⌊x⌋) is the greatest integer k such
that k ≤ x. Given integers m,n with n > 0, show that q = ⌊m/n⌋ is the
integer quotient such that m = qn+ r with 0 ≤ r < n.

11.2. A pocket calculator (or computer) that produces decimal approximations
for quotients can often be used to carry out the division algorithm in the set
of integers. Given integers m,n with n > 0, to find the integer quotient q
such that m = qn+ r with 0 ≤ r < n, simply calculate m÷ n on the device
and then take q to be the integer part (the floor) of the result. Once you
have found q, of course r = m− qn. Use this to find the integer quotient q
and remainder r for each of the following division problems:

(a) 1000÷ 31.
(b) −1000÷ 31.

(c) 16075÷ 652.
(d) −16075÷ 652.

This approach is slightly dangerous, because if the numbers m,n are big
enough, machine calculation can be subject to roundoff error. If you are
using a pocket calculator, try to find a case where it produces an incorrect
integer quotient.

11.3. Compute the following in the modular system Z12.

(a) 7 + 5, 5 + 5, 11 + 11, −1 + (−1).

(b) 3 · 3, 7 · 5, 5 · 5, 11 · 11, (−1) · (−1).

(c) 3− 3, 5− 7, −2− 10, 5− (−3), 5− (−11), −2− (−10).

11.4. Make addition and multiplication tables for Z3.

11.5. Make addition and multiplication tables for Z5.

11.6. Make addition and multiplication tables for Z6.

11.7. Make addition and multiplication tables for Z7.

11.8. Make addition and multiplication tables for Z8.

11.9. Compute the following in the modular system Z1201.

(a) 75 + 500, 800 + 500, −1 + (−1).

(b) 30 · 30, 800 · 500, 92, (−1) · (−1), 12002.

(c) 500− 800, −500− 800, −500− (−800).

11.10. Prove Theorem 11.10.

11.11. The open source Python programming language provides built-in commands
to compute the integer quotient and remainder for integers of any size. If
a, n are integers, then the useful commands and their effects are:

a % n returns resn(a)
a // n returns the integer quotient of a÷ n

divmod(a,n) returns the pair (q, r) such that a = qn+ r and 0 ≤ r < n.
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Note that the divmod command combines the effect of the other two. Python
is installed by default on all Mac and Linux computers, but it must be
downloaded (from python.org) and installed on aWindows computer. Once
Python is installed on your computer, open up a command-line terminal
and type python to start a Python interpreter session. Then you can type
commands in order to do computations, similar to typing commands on a
calculator. Hit Enter at the end of each command to get results.

Use Python to compute the integer quotient q and remainder r for the
following problems:

(a) 1234567890987654321÷ 6090609.

(b) −1234567890987654321÷ 6090609.

(c) 12345678909876543211234567890÷ 1234567890987654321.

11.12. After reading Exercise 11.11, go to a computer and fire up a Python session
in order to compute the following:

(a) 123456789− 987654321 in Z999750750.

(b) 1234567892 in Z999750750.

(c) 1234567893 in Z999750750.

Note: In Python, the symbol ** is used instead of ^ for computing powers;
i.e., to compute ab you must type a ** b instead of a ^ b.
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12 Commutative rings

Our main goal in this section is to prove that the modular system Zn (along
with its operations of addition and multiplication) forms a commutative
ring.

We begin with the definition of commutative ring, which is based on the
properties of the system Z of integers.

12.1 Definition. A commutative ring is a set R with two binary operations,
addition + and multiplication ·, such that for all a, b, c in the set R:

(a) additive associativity: a+ (b+ c) = (a+ b) + c.

(b) additive commutativity: a+ b = b+ a.

(c) additive identity: There is some element 0 ∈ R such that a+ 0 = a =
0 + a.

(d) additive inverse: for every a ∈ R, there exists −a ∈ R such that
a+ (−a) = 0 = (−a) + a.

(e) multiplicative associativity: a · (b · c) = (a · b) · c.
(f) multiplicative commutativity: a · b = b · a.
(g) multiplicative identity: There is an element 1 ∈ R such that a · 1 =

a = 1 · a.
(h) distributivity: a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

The element 0 is called the additive identity, while 1 is the multiplicative
identity. The element −a is the additive inverse of a, or the negative of a.

If we remove axiom (f) from the definition then we get the definition of a
ring. In general, multiplication in a ring is not required to be commutative.
For now, all of our rings will be commutative.

The set of integers Z is a commutative ring under ordinary addition
and multiplication. So are the sets of rational numbers Q, real numbers
R, and complex numbers C. Indeed, the ring axioms are modeled on the
fundamental properties of the ordinary number systems.

12.2 Remark. We can subtract in any ring, because additive inverses exist,
so we can define a − b = a + (−b). Thus, we can view a commutative ring
as a set of elements along with a way to add, subtract, and multiply them,
subject to the familiar properties of number systems. But note that division
may not always be possible in a ring. In Z, we cannot divide 1 by 2, as the
fraction 1/2 is not an integer.

The set N of natural numbers under ordinary addition and multiplication
is not a ring, because most elements of N do not have an additive inverse; i.e.,

54



axiom 1(d) fails. In other words, the set N is not a ring because subtraction
doesn’t make sense in N.

Here are some formal consequences of the definition of ring. These prop-
erties hold in all rings, commutative or not.

12.3 Theorem. Let R be a ring. For any a, b, c ∈ R we have:

(a) a · 0 = 0 = 0 · a.
(b) a(−b) = −(ab) = (−a)b.

(c) (−a)(−b) = ab.

(d) a(b− c) = ab− ac.

(e) (−1)a = −a.

Notice that we have omitted the symbol · in the products in parts (b)–(e)
above. It is standard to omit the multiplication symbol in situations where
it leads to no confusion.

The proof of these basic facts is an exercise. For instance, to prove (a)
one would begin with the equality 0 + 0 = 0, which comes from axiom (h)
of Definition 12.1 by taking a = 0 there, then multiply both sides by a, and
so on.

Theorem 12.10 below says that the set Zn is a commutative ring. So
modular arithmetic provides examples of finite commutative rings. The
main goal of this section is to prove this important result.

To accomplish our goal we need to study another, more sophisticated,
construction of Zn in terms of equivalence classes. This approach gives more
powerful information about the properties of Zn.

We start by saying a bit more about equivalence classes. The following
important definition from set theory will be used again in the future.

Definition. Let A be a set. An equivalence relation on A is a relation ∼
on A which is reflexive (a ∼ a, for all a ∈ A), symmetric (a ∼ b implies
b ∼ a, for all a, b ∈ A), and transitive (a ∼ b and b ∼ c implies a ∼ c, for all
a, b, c ∈ A).

It is a general fact in set theory that an equivalence relation ∼ on a set
A always induces a partition of the set into disjoint equivalence classes:

A =
⋃
a∈A

[a]

where a = [a] = {b ∈ A | a ∼ b} is the equivalence class of a. (We write
a, or [a], for the equivalence class containing a. That class is the set of all
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elements that are equivalent to a.) Another general fact is that

[a] = [b] ⇐⇒ a ∼ b.

Thus, there can be many different ways to write the same equivalence class.
The element used to write a class is called a representative of the class.

We need the following general concept, which will be used again later.

Definition (quotient set). Let ∼ be an equivalence relation on a set A, and
write [a] (or a) for the equivalence class containing a. The set A/∼ = {[a] :
a ∈ A}, the set of all equivalence classes, is called the quotient of A by ∼.

Now we return to the task of proving that Zn is a ring. We need to recall
some basic properties about the set Z of integers.

Recall that if a, b are integers then a divides b (written as a | b) if and
only if there is some k ∈ Z such that b = ak. If a divides b we also say that
b is divisible by a.

12.4 Definition (Gauss). Let n be a fixed positive integer, and a, b ∈ Z.
We say that a is congruent to b modulo n if and only if n | (a− b). We write
a ≡ b (mod n) to mean that a is congruent to b modulo n.

Here are the basic properties of congruences, all of which are routine to
prove.

12.5 Theorem. Let n be a fixed positive integer. Let a, b, c be integers.
Then:

(a) a ≡ a (mod n).

(b) a ≡ b (mod n) implies b ≡ a (mod n).

(c) a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n).

Theorem 12.5 says that congruence modulo n is an equivalence relation
on the set Z. More precisely, suppose we fix n and write a ∼ b if and only
if a ≡ b (mod n). Then ∼ is an equivalence relation on the set Z.

The equivalence relation ∼ on the set Z of integers induces a partition
of Z into disjoint equivalence classes:

Z =
⋃

a∈{0,1,...,n−1}

[a]

where the equivalence class [a] is defined by

[a] = {b ∈ Z | a ∼ b} = {b ∈ Z | a ≡ b (mod n)}.
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The equivalence class [a] of a is the collection of all integers which are con-
gruent mod n to a. We say that a is a representative of its equivalence class
[a]. Note that a given equivalence class has infinitely many representatives,
because

[a] = [b] ⇐⇒ a ∼ b.

For example, if n = 12 then [2] = [14] = [−10] because 2 ≡ 14 ≡ −10 (mod
12); i.e., 2 ∼ 14 ∼ −10.

12.6 Definition. Equivalence classes for the equivalence relation ∼ defined
by congruence modulo n are called congruence classes.

The following gives a nice characterization of the numbers in a congru-
ence class. The proof is an exercise.

12.7 Theorem. Let a ∈ Z and let r = resn(a). Then the congruence class
[a] is the collection of all integers of the form kn+ r where k ∈ Z.

12.8 Definition. We define addition and multiplication of congruence classes
(for some fixed modulus n) by the rules:

[a] + [b] = [a+ b], [a] · [b] = [ab].

The following easy to prove result means that the definition makes sense;
i.e., addition and multiplication of congruence classes are well-defined.

12.9 Theorem. Let a, b, c, d ∈ Z. Suppose that a ≡ b (mod n) and c ≡ d
(mod n); i.e., a ∼ b and c ∼ d Then:

(a) a+ c ≡ b+ d (mod n); i.e., a+ c ∼ b+ d.

(b) ac ≡ bd (mod n); i.e., ac ∼ bd.

Applying the quotient construction to the set Z of integers with the
equivalence relation ∼ defined by congruence modulo n, we obtain:

Z/∼ = {[a] : a ∈ Z} = {[a] : a = 0, 1, . . . , n− 1}.

Note that the distinct classes in Z/∼ are those listed in the rightmost set
above, because of the aforementioned fact that [a] = [b] ⇐⇒ a ∼ b.

Thus there is a bijection from the set Zn = {0, 1, . . . , n− 1} onto the set
Z/∼, defined by a 7→ [a]. Furthermore, it can be shown that this bijection
preserves addition and multiplication, in the sense that:

a⊕ b 7→ [a] + [b]; a⊙ b 7→ [a] · [b]
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for all a, b. (Here we have momentarily reverted to the circle notation, in
order to avoid confusion.) This proves that

Zn
∼= Z/∼

i.e., the structure Zn is isomorphic to the quotient Z/∼, where ∼ is the
equivalence relation defined by congruence modulo n.

The quotient construction makes it easier to prove the following result.

12.10 Theorem. Fix some integer n > 1, and let ∼ be the equivalence
relation defined by congruence modulo n. Arithmetic in the quotient set

Z/∼ = {[a] : a = 0, 1, . . . , n− 1}

satisfies the following properties, holding for all a, b, c ∈ Z:
(a) [a] + ([b+ [c]]) = ([a] + [b]) + [c].

(b) [a] + [b] = [b] + [a].

(c) [a] + [0] = [a] = [0] + [a].

(d) [a] + [−a] = [0] = [−a] + [a].

(e) [a] · ([b · [c]]) = ([a] · [b]) · [c].
(f) [a] · [b] = [b] · [a].
(g) [a] · [1] = [a] = [1] · [a].
(h) [a] · ([b] + [c]) = [a] · [b] + [a] · [c] and ([b] + [c]) · [a] = [b] · [a] + [c] · [a].

In other words, Z/∼ is a commutative ring (and so is its isomorphic cousin
Zn).

Proof. The proof uses the fact that all of these properties correspond to
similar properties of ordinary integers. For instance, to prove (b) just use
the fact that addition in Z is commutative. Then

[a] + [b] = [a+ b] = [b+ a] = [b] + [a]

where the middle equality comes from the fact that a+b = b+a for integers
a, b. This proves (b). All the other properties are proved similarly.

12.11 Remarks. 1. The easy proof of the above theorem is a direct conse-
quence of the power of equivalence classes. Working with equivalence classes
takes some getting used to, but the effort pays dividends, in that it makes
proofs easier.

2. In the construction of Zn, the elements are the residues 0, 1, . . . , n−1
and the operations ⊕,⊙ are defined in a special way. In the construction
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of Z/∼, the elements are the congruence classes [0], [1], . . . , [n − 1] and the
operations +, · are defined in terms of the usual addition and multiplication
of integers. The two constructions turn out to be equivalent, thus providing
two perspectives on Zn.

3. In both constructions of Zn, we have chosen the set {0, 1, . . . , n− 1}
of residues modulo n as a complete set of representatives of the quotient
set. But it is often useful to work instead with a different complete set of
representatives:

Zn =

{
{0,±1, . . . ,±(N − 1), N}, if n = 2N

{0,±1, . . . ,±N}, if n = 2N + 1

where N is an integer. For example, we can write Z7 = {0,±1,±2,±3}.

Exercises

12.1. Prove that a ≡ b (mod n) if and only if a and b have the same integer
residue (remainder) when divided by n.

12.2. Prove Theorem 12.3.

12.3. Define a relation ≈ on the set P of all living people by a ≈ b if the age of a
(in years) is equal to the age of b.

(a) Prove that ≈ is an equivalence relation on P .

(b) If Sally is age 18 years, then describe the class [Sally] in words.

(c) Describe the quotient set P/≈ in words.

(d) Is P/≈ finite or infinite?

12.4. Let A = {a, b, c, . . . , x, y, z} be the usual English alphabet. For the purpose
of this problem, we define a word over A to be any string of one or more
letters from the alphabet. For example, bab, abba, and dogfrog are words
according to our definition. Define a relation ≈ on the set W of words by
α ≈ β if and only if the first letter of α equals the first letter of β (where
α, β ∈ W ).

(a) Prove that ≈ is an equivalence relation on W .

(b) Describe the quotient set W/≈ in words. Find a nice set of represen-
tatives of the classes in W/≈.

(c) Compute |W/≈ |.
12.5. Define a relation ≈ on the set R of real numbers by a ≈ b ⇐⇒ a− b ∈ Z.

(a) Prove that ≈ is an equivalence relation on R.
(b) Compute the class [1/2] of 1/2. What is its cardinality?

(c) Compute the class [3/2] of 3/2. How is [3/2] related to [1/2]?

(d) Describe the quotient set R/≈ and find a complete set of representa-
tives for the quotient set elements.
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(e) Is R/≈ finite or infinite?

12.6. Prove Theorem 12.5.

12.7. Prove Theorem 12.7.

12.8. Prove Theorem 12.9.

12.9. Prove parts (a), (h) of Theorem 12.10.
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13 Fields

The main goal of this section is to show that the ring Zn is a field if and
only if the modulus n is a prime number.

13.1 Definition. A multiplicative inverse of a is an element a−1 such that
aa−1 = 1 = a−1a. An element a in a ring R is said to be a unit (or invertible
element) if there is a multiplicative inverse of a in the ring.

If a multiplicative inverse exists in a ring then it is unique. Every nonzero
element is a unit in the rings Q,R, and C. The only units in the ring Z are
±1.

13.2 Definition. A field is a commutative ring in which 1 ̸= 0 and every
nonzero element is a unit.

Thus, Q,R,C are fields. But Z is not a field.

In a field, the existence of multiplicative inverse means that we can define
division, by:

b/a = b · a−1 (a ̸= 0).

So we can think of a field as a system in which the usual operations of
addition, multiplication, subtraction, and division makes sense and obey
the usual laws of algebra.

The central question for this section is: for which values of n is the ring
Zn a field? To study this question, we look at a more general question: what
is the set of units in Zn?

13.3 Definition. The set of all units in a ring R will be denoted by R× (or
R∗). This is called the multiplicative group of units in the ring.

The set R× provides another example of a group. In terms of this nota-
tion, the definition of a field can be rephrased as: a commutative ring R is
a field if and only if R× = R− {0}.

Recall that the notation gcd(a, b) stands for the greatest common divisor
of integers a, b. Furthermore, recall that gcd(a, b) can be calculated using the
Euclidean algorithm. Finally, recall that the extended Euclidean algorithm
produces integers x, y such that

ax+ by = gcd(a, b).

It is often said that this equation expresses the gcd as a linear combination of
a, b. Using these properties of the gcd, we can prove the following important
result.
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13.4 Theorem. Let n be a positive integer. A congruence class [a] ∈ Zn is
a unit if and only if gcd(a, n) = 1. Hence, the set Z×

n of units in Zn is equal
to {[a] ∈ Zn : gcd(a, n) = 1}.

Proof. Suppose that gcd(a, n) = 1. Use the Euclidean algorithm to find
integers x, y such that ax+ny = 1. This can be done because gcd(a, n) = 1
by hypothesis. Then ax− 1 = ny, so n | (ax− 1) and thus ax ≡ 1 (mod n).
This means that [a] · [x] = [1] in Zn. So [x] = [a]−1 and [a] is a unit.

On the other hand, if gcd(a, n) = g > 1, then I claim that [a] is not a unit.
To see this, assume it is a unit. Then [a]−1 exists in Zn and [a] · [a]−1 = [1].
But the condition gcd(a, n) = g > 1 means that g | a and g | n, so a = a1g
and n = n1g for some integers a1, n1. Now

[a] · [n1] = [an1] = [a1gn1] = [a1n] = [0].

If we multiply the equation [a] · [n1] = [0] by [a]−1 we obtain [a]−1 · [a] · [n1] =
[0], i.e., [n1] = [0]. But this is a contradiction, since the equation n = n1g
implies that 0 < n1 < n. Thus our assumption must be incorrect, and [a] is
not a unit.

13.5 Corollary. Let n be a positive integer. Then Zn is a field if and only
if n is a prime number.

Proof. Suppose that n is prime. Then for all [a] ̸= [0] we have gcd(a, n) = 1.
Each such [a] is a unit in Zn by the theorem. So Zn is a field.

Suppose that n is not prime. Then n = ab for some integers 1 < a, b < n.
Then gcd(a, n) = a, so [a] is not a unit in Zn. This is a nonzero element of
Zn which is not a unit, so Zn is not a field.

13.6 Definition (notation). From now on, we write Fp = Zp for the field
of p elements, when p is a prime number. An alternative notation for Fp is
GF(p). In this context, GF stands for Galois field. The finite fields Fp of p
elements are called Galois fields.

It should be noted that there are other finite fields besides the ones we
have constructed. We leave that for later.

13.7 Examples. Z×
4 = {[1], [3]}, Z×

7 = {[1], [2], [3], [4], [5], [6]}, and
Z×
15 = {[1], [2], [4], [7], [8], [11], [13], [14]}.
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Exercises

13.1. Prove that a commutative ring R is a field if and only if R× = R− {0}.
13.2. There is one and only one pair (a, b) of integers for which gcd(a, b) is not

defined. What pair is it?

13.3. Compute the set Z×
n of units for the following cases:

(a) n = 2.
(b) n = 3.

(c) n = 5.
(d) n = 6.

(e) n = 8.
(f) n = 9.

13.4. Use guess-and-check (trial and error) to solve the equation 3x = 4 in Z10, if
possible. (When the modulus is small, there are not many cases to try.)

13.5. Use guess-and-check (trial and error) to solve the equation 4x = 5 in Z10, if
possible.

13.6. For which of the following values of n is the ring Zn a field:

(a) n = 2.
(b) n = 3.

(c) n = 5.
(d) n = 6.

(e) n = 8.
(f) n = 9.

13.7. Use guess-and-check (trial and error) to calculate the following inverses:

(a) [2]−1 in Z9. (b) [3]−1 in Z10. (c) [4]−1 in Z15.

13.8. Prove that the equation ax = b is solvable in Zn whenever a ∈ Zn is a unit.
Explain exactly how to solve the equation.

13.9. The Euclidean algorithm, which was described in the last book of Euclid’s
Elements, works as follows, for any given pair of integers a, b such that not
both are zero:

1) If b < 0 replace b by |b|. Do the same for a.

2) If b = 0 then the gcd is a, so return a and stop.

3) If b ̸= 0, compute the unique integers q, r such that a = qb + r and
0 ≤ r < b. Then replace the pair (a, b) by the pair (b, r). Go to Step 2.

Use the Euclidean algorithm to compute the following:

(a) gcd(87031, 4750). (b) gcd(48157656, 541541).

13.10. Refer to the previous problem for a description of the Euclidean algorithm.

(a) Prove that whenever the pair (a, b) of integers is not (0, 0) then the
Euclidean algorithm must stop after finitely many steps.

(b) Explain what happens in the first stage of the algorithm if 0 < a < b.
What are the next values of (a, b)?
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13.11. The extended Euclidean algorithm returns a triple xgcd(a, b) = (g, x, y) of
integers such that g = gcd(a, b) and g = ax+ by. We assume that both a, b
are given positive integers. Then the algorithm works as follows:

1) Set (x0, y0) = (1, 0). Set (x, y) = (0, 1).

2) If b = 0, return (a, x0, y0).

3) If b > 0, let q, r be the unique integers such that a = qb+r and 0 ≤ r < b.
Replace (a, b) by (b, r).

4) Replace (x, y) by (x0 − qx, y0 − qy). Replace (x0, y0) by (x, y). Go to
Step 2.

Use the extended Euclidean algorithm to compute the following:

(a) xgcd(23, 301). (b) xgcd(87031, 4750). (c) xgcd(48157656, 541541).

13.12. Use the results of the previous problem to calculate the following inverses:

(a) [23]−1 in Z301.
(b) [4750]−1 in Z87031.

(c) [541541]−1 in Z48157656.
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Chapter 4

Linear Groups

14 Matrix groups

Now we investigate groups formed by sets of matrices. These groups are
often infinite sets, so we will now be considering infinite groups, in contrast
to the finite groups we have seen so far. Initially, all of our matrices will
have real number entries.

14.1 Definition. A group of matrices (or matrix group for short) is any
nonempty set G of n× n nonsingular matrices which is:

(a) closed under products: for all A,B ∈ G, the product AB ∈ G.

(b) closed under inverses: for all A ∈ G, the inverse A−1 ∈ G.

We only consider square (n×n) matrices. We have to restrict to nonsin-
gular matrices because we want our matrices to have inverses. Recall that a
basic theorem of linear algebra states that a matrix is invertible if and only
if it is nonsingular. Recall also that a matrix is nonsingular if and only if
its determinant is nonzero.

14.2 Examples. Here are some important examples of matrix groups.

1. The general linear group GL(n) is the group consisting of all n × n
nonsingular matrices. In symbols,

GL(n) = {n× n matrices A : detA ̸= 0}.

The group GL(n) is infinite (the cardinality of the set is infinite). Note that
GL(1) can be identified with the set R× of units in R, because the invertible
1× 1 matrices are all of the form [a] for a ̸= 0.

65



2. The special linear group SL(n) is the group consisting of all n × n
matrices of determinant equal to 1. In symbols,

SL(n) = {A ∈ GL(n) : detA = 1}.

By definition, we have an inclusion SL(n) ⊂ GL(n). It is an exercise to
verify that this is a matrix group. Note that SL(1) is actually a finite group,
even though SL(n) is infinite, for all n > 1.

3. The orthogonal group O(n) is the group consisting of all n×n orthog-
onal matrices. A matrix A is said to be an orthogonal matrix if its inverse
is equal to its transpose: A−1 = AT. So, in symbols:

O(n) = {A ∈ GL(n) : A−1 = AT}.

It is an exercise to verify that this is a matrix group. Note that |O(1)| = 2.
For all n ≥ 2, the group O(n) is infinite.

4. The special orthogonal group SO(n) is the group of all n×n orthogonal
matrices of determinant equal to 1. In symbols,

SO(n) = {A ∈ O(n) : detA = 1}.

An orthogonal matrix of determinant 1 is also known as a proper orthogonal
matrix. So we can rephrase the definition to say: SO(n) is the group of all
proper orthogonal n × n matrices. Note that SO(1) = SL(1) has a single
element, but SO(n) is infinite for all n ≥ 2.

14.3 Remark. Matrix groups are also called linear groups. This is due to
the fact that square matrices represent linear operators. If A is an n × n
matrix, then the function α : Rn → Rn defined by α(X) = AX is a linear
operator. So every matrix group is isomorphic to a group of linear operators.

We will use some basic linear algebra to find a nice set of generators for
the group GL(n). Recall that elementary row operations are used to solve
systems of linear equations (by Gaussian elimination). The elementary row
operations on a matrix are:

(i) add t times row j to row i, for any i ̸= j, any t ∈ R,
(ii) multiply row i by a scalar t ∈ R, for any i, any t ̸= 0,

(iii) swap row i and row j, for any i ̸= j.

If A is a matrix, then the elementary row operations on A are equivalent to
left multiplication of A by the appropriate corresponding elementary matrix.
The elementary matrices are denoted by:
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(i) Eij(t), for any i ̸= j, any t ∈ R,
(ii) Mi(t), for any i, any t ̸= 0,

(iii) Pij , for any i ̸= j.

By definition, the elementary matrices are precisely those matrices that are
obtained from an identity matrix by performing a single elementary row
operation of the corresponding type. This rule defines a bijection from
elementary row operations onto elementary matrices.

14.4 Theorem. If A is any n×n matrix and B is the matrix resulting from
performing a single elementary row operation to A then B = UA, where U
is the corresponding elementary matrix of the same type.

This simple result is proved in most linear algebra textbooks. The proof
is an easy calculation. The theorem has the following pleasant consequence.

14.5 Corollary. Any nonsingular n × n matrix A can be expressed as a
product of elementary matrices.

Proof. The proof is constructive: it tells us not only that the desired factor-
ization exists, it also gives an algorithm that we may use to find one.

Let A be a nonsingular n× n matrix. Then the reduced echelon form of
A is I, so by applying Gaussian elimination to A we can row reduce A to
I. This means that there is a finite sequence of elementary row operations
that transform A to I. Let U1, U2, . . . , Uk be the elementary matrices corre-
sponding to the elementary row operations, in order. Then by the theorem,
we have

I = (UkUk−1 · · ·U2U1)A.

It follows by matrix algebra that A = U−1
1 U−1

2 · · ·U−1
k−1U

−1
k . Since the in-

verse of any elementary matrix is another elementary matrix of the same
type, we are finished.

The corollary gives us a nice set of generators for the general linear group
GL(n). Before we formulate the result, we make a formal definition.

14.6 Definition. In general, we say that a group G is generated by a set
S ⊂ G of its elements if every element of G is expressible as a product of
elements of S and inverses of elements of S.

Now here is the result.

14.7 Theorem. The groupGL(n) is generated by the set of n×n elementary
matrices.
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Proof. This follows immediately from the preceding corollary, which states
that any matrix in GL(n) is expressible as a product of elementary matrices.

14.8 Remark. In general, to understand a group, it is desirable to find a
nice subset of generators. Finding a set of generators reduces many questions
about the group to questions about its generators.

We have previously proved that the group Sn is generated by its transpo-
sitions. This is a case in point: many questions about permutations reduce
to a question about transpositions. So too for the matrix group GL(n):
many questions about nonsingular matrices reduce to a question about ele-
mentary matrices.

It should be emphasized that generating sets are not unique. There are
many different sets generating GL(n); the same is true of Sn.

Matrix groups are symmetry groups

The groups introduced in this section are also symmetry groups. To see this,
recall that an n × n matrix A represents the linear operator α : Rn → Rn

defined by the rule α(X) = AX. Nonsingular matrices represent linear
automorphisms, the bijective linear operators. So

GL(n) = the group of linear automorphisms of Rn.

This is the symmetry group of the vector space Rn, because the linear au-
tomorphisms preserve the vector space structure.

The special linear group SL(n) is the group of linear automorphisms of
Rn preserving volume and orientation, in an appropriate sense. To under-
stand this, recall the following fact from multivariable calculus: given three
column vectors P = (p1, p2, p3), Q = (q1, q2, q3), R = (r1, r2, r3) ∈ R3, the
absolute value of the determinant of the 3 × 3 matrix M = [P |Q|R] they
form gives the volume of the parallelopiped they generate, and the sign of
the determinant determines its orientation in some appropriate sense. Then
a linear operator α : Rn → Rn, given by the rule α(X) = AX with A a
3 × 3 matrix, is volume and orientation preserving if and only if the de-
terminant of M remains unchanged when we replace the vectors P,Q,R
by α(P ), α(Q), α(R). Equivalently, α preserves volume and orientation if
and only if detM = detAM , where A represents α. This is equivalent to
detA = 1. That explains the idea for R3, and it turns out that this can be
(with a fair amount of work) extended to Rn for any n.
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The orthogonal group O(n) is the group of linear automorphisms of Rn

preserving the usual dot product. Since dot product determines length and
angle, we can also say that O(n) is the group of linear automorphisms of Rn

preserving length and angle, but it is simpler to focus on the dot product.
A linear operator α : Rn → Rn is given by the rule α(X) = AX, where A is
a matrix. If for any pair X,Y of vectors in Rn we have

α(X) · α(Y ) = X · Y

then we say that the operator α preserves the dot product. Recall that the
dot product of two column vectors may also be written as a matrix product:
X · Y = XTY . Thus, the above dot product equality is equivalent to the
following:

(AX)T(AY ) = XTY ⇐⇒ XTATAY = XTY.

Since this condition has to hold for all X,Y ∈ Rn, it follows that it holds if
and only if ATA = I, which is equivalent to the condition A−1 = AT. So α
preserves dot product if and only if A−1 = AT.

From the last paragraph it is not hard to see that SO(n) is the group
of linear automorphisms of Rn which preserve volume, orientation, and dot
product (distance and angle).

We can only hint at the many beautiful and profound connections be-
tween matrix groups and geometry. There are many books devoted entirely
to one or more aspects of this, so it is impossible to be comprehensive here.

Exercises

14.1. Recall that the determinant of a product of matrices equals the product of
their determinants. Use this to prove that:

(a) GL(n) is a matrix group.

(b) SL(n) is a matrix group.

14.2. Prove that any matrix group G must contain the identity matrix I.

14.3. Describe all the elements of SL(1). What is the order |SL(n)| of SL(n)?
Justify your answers.

14.4. Recall that the inverse of a product of two matrices is equal to the product
of their inverses in reverse order: (AB)−1 = B−1A−1. The same is true
of the transpose: (AB)T = BTAT. Use these facts to prove that O(n) is a
matrix group.

14.5. Prove that |O(1)| = 2; i.e., O(1) is a group of order 2.

14.6. Prove that O(n) = {A ∈ GL(n) : AAT = I}. (Don’t make the error of
assuming that matrix multiplication is commutative.)
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14.7. Suppose that an n × n orthogonal matrix A = [A1|A2| · · · |An] is regarded
as a matrix of column vectors.

(a) Show that AT
i Aj = δij . (Here δij is the Kronecker delta symbol,

defined to be 1 if i = j and 0 otherwise.)

(b) Show that the dot product Ai ·Aj = δij .

(c) Deduce that if i ̸= j then Ai ⊥ Aj .

(d) Deduce that |Ai| = 1, i.e., Ai is a unit vector for all i.

(e) Deduce that the columns of an n × n orthogonal matrix form an or-
thonormal basis of Rn.

14.8. Prove that SO(n) is a matrix group.

14.9. Prove that SO(1) = SL(1) is a group of one element.

14.10. Prove that SO(n) = SL(n) ∩O(n). [Hint: Show each side is a contained in
the other.]

14.11. Prove that if G,H ⊂ GL(n) are any two matrix groups (consisting each of
n× n matrices) then G ∩H is another matrix group.

14.12. (a) Prove that if A ∈ O(n) then detA = ±1.

(b) The matrices A ∈ O(n) of determinant −1 are called improper orthog-
onal matrices. Is the set of improper orthogonal matrices a matrix
group? Prove your answer.

14.13. Let D(n) be the set of all diagonal matrices in GL(n). Show that D(n) is a
matrix group.

14.14. (a) Prove that Eij(t) ∈ SL(n), for any i ̸= j, any t ∈ R.
(b) Let D1(n) be the set of diagonal matrices in SL(n). Show that D1(n)

is a matrix group.

(c) (∗) Prove that SL(n) is generated by the set S = D1(n)∪{Eij(t) : i ̸=
j, t ∈ R}. [Hint: Argue that it is possible to row reduce any matrix
A ∈ SL(n) to a diagonal matrix only using type (i) elementary row
operations.]
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15 The group of rotations of the plane

In this section we will look more closely at a special example, namely the
group SO(2). This is the group of all 2×2 orthogonal matrices of determinant
1.

What can be said about the matrices in SO(2)? Let’s figure out the
answer, which involves a calculation. Suppose that

A =

[
a b
c d

]
∈ SO(2).

Then we know that A−1 = AT and detA = 1. The first condition implies
that I = ATA, which was obtained by right multiplication by A. So we
know that [

a c
b d

] [
a b
c d

]
=

[
1 0
0 1

]
.

Equivalently, this says that[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
=

[
1 0
0 1

]
.

In other words, the column vectors A1 = [ ac ], A2 = [ bd ] in the columns of A
must have unit length, so they lie somewhere on the unit circle. Also, the
dot product A1 ·A2 = ab+ cd = 0, so the vectors A1, A2 are perpendicular.
Since A1 = [ ac ] is on the unit circle x2 + y2 = 1, there must be some angle θ
such that A1 = [ cos θsin θ ]. Since A1 ⊥ A2, the angle between A1 and A2 is π/2,

so A2 = [
cos(θ+π/2)
sin(θ+π/2)

] = [− sin θ
cos θ

]. This proves that A ∈ SO(2) must be of the

form

A = Rθ :=

[
cos θ − sin θ
sin θ cos θ

]
for some real number θ. Conversely, it is easy to check that any matrix of
the above form is in SO(2). This proves the following result.

15.1 Theorem. The group SO(2) of all proper orthogonal 2 × 2 matrices
is the group of all matrices of the form Rθ, as defined above, where θ ∈ R.

Because the trigonometric functions are periodic, with period 2π, it fol-
lows that Rθ = Rθ+2π. So in fact the set SO(2) can be written more com-
pactly as

SO(2) = {Rθ : θ ∈ [0, 2π)}.
Regarded as linear operators on R2, a matrix Rθ ∈ SO(2) defines the func-
tion ρθ : R2 → R2 given by the rule ρθ(X) = RθX.
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15.2 Theorem. The linear operator ρθ defined by ρθ(X) = RθX is a ro-
tation of R2 through θ radians, in the sense that if X ∈ R2 is regarded as
a vector, then Y = ρθ(X) is the vector obtained by rotating X through an
angle of θ radians.

Proof. Observe that the operation rotθ of rotating the plane by θ radians is a
linear operator on R2: rotθ(X1+X2) = rotθ(X1)+rotθ(X2) and rotθ(cX) =
c rotθ(X) for all c ∈ R, X,X1, X2 ∈ R2. Of course, the function ρθ is also
a linear operator. In general, to prove equality of functions f, g, one must
show that f(x) = g(x) for all x. But for linear transformations, showing
equality is easier, because it suffices to prove they agree on a basis of the
domain. So we only need to check that

ρθ (̂ı) = rotθ (̂ı), ρθ(ȷ̂) = rotθ(ȷ̂)

where {ı̂, ȷ̂} = {[ 10 ], [ 01 ]} is the standard basis of R2. This verification is an
exercise, and it completes the proof.

15.3 Corollary. We have ρθ1ρθ2 = ρθ1+θ2 and (ρθ)
−1 = ρ−θ. In particular,

rotations commute: ρθ1ρθ2 = ρθ2ρθ1 for all θ1, θ2 ∈ R.

Proof. This is clear from the fact that ρθ is a rotation. So rotating by θ2
radians followed by rotating by θ1 radians is the same as rotating by θ1+ θ2
radians, etc.

This corollary immediately implies that we have similar relations on the
rotation matrices:

Rθ1Rθ2 = Rθ1+θ2 and (Rθ)
−1 = R−θ.

In particular, rotation matrices commute: Rθ1Rθ2 = Rθ2Rθ1 for all θ1, θ2 ∈
R.

15.4 Corollary. The matrix group SO(2) is isomorphic to the group {ρθ :
θ ∈ R} of rotations of the euclidean plane R2.

Proof. The isomorphism is given by f(Rθ) = ρθ.

Now we consider improper orthogonal 2×2 matrices. By definition, these
are the matrices A ∈ O(2) of determinant equal to −1. One such matrix is
the matrix

H0 =

[
1 0
0 −1

]
.
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The corresponding linear operator on R2 is defined by X 7→ H0X; i.e.,
(x, y) 7→ (x,−y). Geometrically, this is the operator of reflection across the
horizontal axis. Now we can describe all the improper orthogonal matrices
in O(2); it turns out that they are all reflections.

15.5 Theorem. (a) For any improper orthogonal 2×2matrixH, the matrix
product H0H is a proper orthogonal matrix, i.e., H0H ∈ SO(2). The same
holds for HH0.

(b) Reflection reflθ across the line through the origin at angle θ with the
horizontal axis of R2 is a linear operator on R2, and its matrix Hθ is an
improper orthogonal matrix.

(c) Hθ = H0R−2θ.

Proof. (a) Recall that for square matrices, the determinant of a product
equals the product of the determinants. Thus det(H0H) = det(H0) det(H) =
(−1)(−1) = 1. So H0H ∈ SO(2), as required. The other case is similar.

(b) It is easy to check that reflection is a linear operator. So we can
represent reflθ by some 2× 2 matrix Hθ with respect to the standard basis
of R2, so that reflθ(X) = HθX, for all X ∈ R2. Since the operator reflθ
preserves length of, and angles between, vectors, it is clear that Hθ ∈ O(2).
Furthermore, det(Hθ) = −1 because Hθ cannot be a rotation. So Hθ is an
improper orthogonal matrix. By part (a), it follows that H0Hθ ∈ SO(2);
i.e., it is equal to some rotation matrix.

(c) It suffices to check that H0Hθ = R−2θ, because once we have that
equation we can left multiply by H0 (using H2

0 = I) to obtain the result.
Since we know that H0Hθ is some rotation matrix, it is enough to look at
what it does to a single chosen (nonzero) vector. Choose a point P ̸= 0 on
the line fixed by reflθ. Then HθP = P and H0HθP = H0P = P ′, where P ′

is the reflection of P across the horizontal axis. In the picture,

the angle ∠POP ′ (where O is the origin) is an angle of −2θ radians, so the
effect of left multiplying by H0Hθ is the same on P as the effect of rotating
P by −2θ radians. So H0Hθ = R−2θ, and we are done.
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In summary, we now have a complete understanding of the full orthog-
onal group O(2).

15.6 Corollary. O(2) = {Rθ : θ ∈ R} ∪ {Hθ : θ ∈ R}.

Another corollary of the theorem is that O(2) is generated by SO(2) and
H0. (This is still true if H0 is replaced by any reflection.)

Now that we understand SO(2) and O(2), we return to the dihedral
groups Dn defined in a previous section. Recall that

Dn = {i, r, r2, . . . , rn−1} ∪ {d, dr, dr2, . . . , drn−1}

is the symmetry group of a regular n-gon. In the displayed decomposition,
the first set consists of rotations of the n-gon, and the second consists of
reflections of it. The reflection d is the one that fixes vertex n of the n-gon.

Note that all rotations and reflections of the n-gon must fix the center
point (centroid) of the n-gon. If we place the n-gon on the euclidean plane
R2 so that its centroid lies at the origin then the rotations and reflections
in Dn extend to rotations and reflections of R2. (This requires further work
to prove rigorously, but it is intuitively clear.)

This means that the elements of the symmetry group Dn may be rep-
resented by elements of the orthogonal group O(2); i.e., they can be repre-
sented by 2× 2 orthogonal matrices. We choose to place the n-gon in such
a way that its nth vertex lies on the positive x-axis. Then the extension of
the symmetry d is the reflection H0. So the representation f : Dn → O(2)
is defined by

r 7→ R2π/n, d 7→ H0.

The representation preserves products, in the sense that f(ab) = f(a)f(b),
so the images displayed above determine the values of f on every element of
Dn. Since f is injective, it defines an isomorphism of Dn onto the subgroup
⟨R2π/n, H0⟩ of O(2) generated by R2π/n, H0.

So we can “understand” the dihedral group Dn by working with matrices.

What happens when we take the limit as n approaches ∞? Well, the
regular n-gon approach a circle. The number of rotations, and thus also the
number of reflections, increases to infinity. So in some sense it is fair to say
that limn→∞Dn = O(2). This enables another way to think of O(2) as a
symmetry group: O(2) is the symmetry group of a circle. For this reason,
it is sometimes said that the group O(2) is the “infinite dihedral group.”
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Exercises

15.1. Show that any matrix of the form Rθ must belong to SO(2), for any θ ∈ R.
15.2. Show that the origin is a fixed point for any rotation operator ρθ.

15.3. Prove that the following identities follow from those in Corollary 15.3.

(a) Rθ1Rθ2 = Rθ1+θ2 and (Rθ)
−1 = R−θ, for all θ, θ1, θ2 ∈ R.

(b) Rθ1Rθ2 = Rθ2Rθ1 for all θ1, θ2 ∈ R.
15.4. Use the results of the preceding exercise to give a conceptual derivation of

the addition formulas for sine and cosine.

15.5. Give a different proof of Theorem 15.2, by showing that the angle between
X and ρθ(X) is equal to θ, for any 0 ̸= X ∈ R2. [Hint: Recall that the angle
between two vectors in R2 is determined by dot products.]

15.6. Show that the product of any two reflection matrices in O(2) must be a
rotation matrix.

15.7. (a) Show that Hθ = R2θH0.

(b) Show that R2θH0R2θ = H0. What formula holding for dihedral groups
is this similar to?

15.8. (a) Argue that the composite of a reflection and a rotation (in either order)
must be a reflection.

(b) Show that Hθ1Rθ2 must be some reflection matrix, i.e., some Hθ3 .
Figure out what reflection matrix it is; i.e., figure out how to express
θ3 in terms of θ1, θ2. Justify your answer.
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16 Matrix groups over other fields

Most of the basic theory of matrices, and indeed all of linear algebra, which
is usually developed initially over the field R of real numbers, generalizes to
any field F . In this generalization, the vector space Rn of n-tuples of real
numbers is replaced by the vector space Fn of n-tuples over F , and matrices
with entries from R are replaced by matrices with entries from F .

16.1 Examples. Here are some important examples of matrix groups over
an arbitrary field F . The field F could be Q,C, or even a finite Galois field
Fp.

1. The general linear group GL(n, F ) = GLn(F ) is the group consisting
of all n× n nonsingular matrices with entries from the field F . In symbols,

GLn(F ) = {n× n matrices A : detA ̸= 0}.

The group GLn(F ) is finite if the field F is finite.

2. The special linear group SL(n, F ) = SLn(F ) is the group consisting
of all n× n matrices of determinant equal to 1. In symbols,

SLn(F ) = {A ∈ GLn(F ) : detA = 1}.

By definition, we have an inclusion SLn(F ) ⊂ GLn(F ). Again, this is a
finite group if the field F is finite.

It is also possible to define orthogonal groups over fields other than R,
but there are technicalities that we do not want to face at the moment.

When one allows the field F to be the field of complex numbers, we of
course have GLn(C) and SLn(C) as above, but two important extra examples
appear, as follows.

16.2 Examples. 1. The unitary group U(n) = Un(C) is the group consist-
ing of all n×n unitary matrices. A square matrix A with complex entries is

unitary if A−1 = A∗, where A∗ = A
T
. The matrix A∗ is called the conjugate

transpose of A. It is obtained by first taking the complex conjugate of each
entry of A to get the matrix A, and then taking the transpose.

2. The special unitary group SU(n) = SUn(C) is the group consisting of
all n× n special unitary matrices. A square matrix A with complex entries
is special unitary if it is unitary and has determinant equal to 1.

Unitary groups play a fundamental role in mathematical physics.
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16.3 Example. Many basic properties of matrices work for matrices with
entries from an arbitrary ring R. This observation leads to many more new
examples of matrix groups. For instance, the group

SL(n,Z) = SLn(Z) = {n× n matrices A with integer entries | detA = 1}

makes sense and has been studied extensively. It is an example of an arith-
metic group. Arithmetic groups have connections to number theory and
lattice theory.

Lattice theory has recently been applied to invent new public-key cryp-
tosystems.

Exercises

16.1. (a) List all the matrices in GL2(F2).

(b) List all the matrices in SL2(F2).

16.2. Use counting principles to compute |GL2(Fp)|.
16.3. Use counting principles to compute |SL2(Fp)|.
16.4. Let F be any field. Let G be the set of all matrices of the form E(t) =[

1 t
0 1

]
, where t ∈ F .

(a) Show that E(s)E(t) = E(s+ t) for any s, t ∈ F .

(b) Show that E(t)−1 = E(−t) for any t ∈ F .

(c) Prove that the set G is a matrix group. (You have to show it is a
nonempty set of matrices that is closed under products and inverses.)

16.5. Let G be the set of all block matrices of the form

[
A B
0 C

]
with A,B,C all

2 × 2 matrices over a field F such that det(AC) ̸= 0. Verify that G is a
matrix group.

16.6. Show that SU(1) = SU1(C) is isomorphic to the multiplicative group {eiθ |
θ ∈ R} of points on the unit circle, regarded as a subgroup of C×.
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Chapter 5

Abstract Groups

17 Abstract groups

The axiomatic definition of abstract group is based on special classes of
examples of groups, such as permutation groups and matrix groups. Those
examples share some common features: closure under products and inverses,
associativity, and identity. In the definition we are about to give, closure
under products is implicit in the definition of binary operation, while closure
under inverses is an axiom.

We start with the concept of a binary operation on a set. Intuitively,
a binary operation is a law of combination which combines two elements
of a set to produce another element of the set. Ordinary addition and
multiplication are canonical examples.

17.1 Definition. Let S be any given set. Any function from S × S to S is
called a binary operation or law of combination on the set S. If f is a binary
operation then tradition demands that we write x f y for the value1 at the
input pair (x, y) instead of the usual f(x, y).

In this context the word binary refers to the fact that the function de-
pends on two input variables. By the same token, a unary operation on
the set S would be a function from S to itself. For example, the function
that sends each integer to its negative is a unary operation on the set Z of
integers.

17.2 Examples. 1. Addition (+) is a binary operation on any of the usual

1Writing a function between its arguments is called infix notation in computer science.
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number sets N, Z, Q, R, C. Multiplication (·) is another binary operation
on any of the sets N, Z, Q, R, C.

2. Matrix multiplication is a binary operation on the set Matn(F ) of all
n× n matrices with entries in a given field F .

3. Composition of functions is a binary operation on the set Sn of per-
mutations of n = {1, . . . , n}.

4. More generally, composition of functions is a binary operation on the
set SS of all self-maps S → S of any set S.

5. Here is a binary operation # on the finite set S = {a, b, c, d} which is
defined by means of a “multiplication” table as follows:

# a b c d

a a a d d
b b b c c
c a d b c
d b c a d

This table defines a law of combination for pairs of elements of S. For
instance, it says that a#c = d and c#b = d. For finite sets S, we can always
define a binary operation (law of combination) on S by a table.

It is important to realize that closure under products is built in to the
definition of a binary operation: to say that ∗ is a binary operation on S
means that S is closed under ∗, since all the values x ∗ y must fall again
within S, for any x, y ∈ S. This is just another way of saying that ∗ is a
function mapping S × S → S.

17.3 Definition. A group is a set G along with a given binary operation ∗
on G, such that the following three axioms hold:

(G1) The operation ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(G2) There is an identity element e ∈ G satisfying: e ∗ a = a = a ∗ e for all
a ∈ G.

(G3) Each a ∈ G has an inverse in G: given a ∈ G there exists some a′ ∈ G
such that a ∗ a′ = a′ ∗ a = e.

Note that closure under ∗ is implicit in this definition, since ∗ is a binary
operation on G. Moreover, closure under inverses is the content of axiom
(G3).

When describing a group we should specify not only the set G but also
the binary operation ∗ on G, since a given set can have many different binary
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operations defined on it. People often use a notation such as (G, ∗) to denote
a group. If the binary operation ∗ is implied by context, then we often just
write G for simplicity.

17.4 Definition. An abelian2 group is any group (G, ∗) in which the com-
mutative law holds: a ∗ b = b ∗ a, for all a, b ∈ G.

As we have seen, matrix and permutation groups are usually not abelian,
because matrix multiplication and functional composition are usually not
commutative.

17.5 Theorem (Basic properties). Let (G, ∗) be any group, with binary
operation ∗, and let a, d, x, y ∈ G.

(a) The identity element e ∈ G in axiom (G2) is unique.

(b) The inverse of any a ∈ G in axiom (G3) is unique.

(c) The equation a ∗ x = a ∗ y implies that x = y. (This is called left
cancellation.)

(d) The equation x ∗ a = y ∗ a implies that x = y. (This is called right
cancellation.)

(e) Each of the equations a ∗ x = b, x ∗ a = b (a, b ∈ G) has a unique
solution x ∈ G.

(f) The inverse of a product is the product of the inverses in reverse order.

Proof. (a) Suppose that e, f are identity elements of G. Then by axiom
(G2) we have e ∗ a = a and a = a ∗ f for all a ∈ G. In particular, taking
a = f in the first equality and a = e in the second, we get e ∗ f = f and
e = e ∗ f . Hence e = f . This proves uniqueness of identity.

(b) Suppose that b, c are both inverses of a given a ∈ G. Then a ∗ b =
e = b ∗ a and a ∗ c = e = c ∗ a by axiom (G3). By the associative law (G1)
we have c ∗ (a ∗ b) = (c ∗ a) ∗ b, so c ∗ e = e ∗ b, so c = b by (G2). This proves
uniqueness of inverses.

(c) Suppose a ∗ x = a ∗ y. Then a′ ∗ (a ∗ x) = a′ ∗ (a ∗ y) where a′ is the
inverse of a. By (G1) this implies that (a′ ∗ a) ∗ x = (a′ ∗ a) ∗ y, so by (G3)
we have e ∗ x = e ∗ y, which implies by (G2) that x = y.

(d) This is proved similarly to (c), except we multiply by the inverse a′

on the right instead of on the left.

(e) Suppose that a ∗ x = b. Then by left multiplication by the inverse a′

of a we have a′ ∗ (a ∗ x) = a′ ∗ b, so by (G1) we have (a′ ∗ a) ∗ x = a′ ∗ b.

2In honor of Niels Henrik Abel (1802–1829).
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Thus by (G3) we have e ∗x = a′ ∗ b, so by (G2) we obtain x = a′ ∗ b. This is
the unique solution. This proves the first claim. The other claim is proved
similarly, using right multiplication instead of left multiplication.

(f) Given two elements a, b of G let their respective inverses be a′, b′.
Then by axiom (G3) we have a ∗ a′ = e, b ∗ b′ = e. Thus

(a ∗ b) ∗ (b′ ∗ a′) = a ∗ (b ∗ b′) ∗ a′ = (a ∗ e) ∗ a′ = a ∗ a′ = e,

where we used generalized associativity for the first equality. Let z be the
inverse of a ∗ b. Then (a ∗ b) ∗ z = e by (G3). So (a ∗ b) ∗ z = (a ∗ b) ∗ (b′ ∗ a′).
By left cancellation we obtain z = b′ ∗ a′, i.e., the inverse of a ∗ b is b′ ∗ a′.
This proves the statement for products of length two, and it easily extends
to products of more than two elements, by induction on the length of the
product.

Additive versus multiplicative notation

If the binary operation ∗ is written as addition (+) or multiplication ( · )
then the group is known as an additive group or a multiplicative group,
respectively.

If (G,+) is an additive group, it is customary to denote the identity
element by the symbol 0 and the inverse of a by the symbol −a. In this case
the group axioms take the following form:

(G1) (a+ b) + c = a+ (b+ c);

(G2) 0 + a = a = a+ 0;

(G3) a+ (−a) = 0 = (−a) + a.

It is customary to use the additive notation for a group only for abelian
groups and we shall follow that convention in this course.

If (G, ·) is a multiplicative group, it is customary to abbreviate products
a ·b by ab. In this case we usually denote the identity element by the symbol
1 and the inverse of a by the symbol a−1. Then the group axioms take the
form:

(G1) (ab)c = a(bc);

(G2) 1a = a = a1;

(G3) aa−1 = 1 = a−1a.

The default notation for the group operation is multiplicative notation,
but additive groups appear frequently as well.

17.6 Examples. (a) Any permutation group is a group. Any matrix group
is a group.
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(b) The dihedral group Dn is a group. All symmetry groups are groups.

(c) The abstract cyclic group is the multiplicative group Cn generated by
a symbol x subject to the relation xn = 1. As a set, Cn = {1, x, x2 . . . , xn−1},
so |Cn| = n.

(d) Any vector space V gives an additive abelian group (V,+) under
vector addition. The identity element is the zero vector 0 in V and the
additive inverse of a vector v ∈ V is the vector −v. In particular, (Rn,+) is
an example of such a group, and more generally we have the group (Fn,+)
where F is any field.

(e) Any ring R (commutative or not) contains two groups. One is the
additive abelian group (R,+), in which 0 is the additive identity and the
inverse of a is written as −a. In particular, (Z,+), (Q,+), (R,+), (C,+)
are all additive abelian groups. Also, (Zn,+) is an additive abelian group,
for any positive integer n.

(f) Recall that R× = R∗ is the set of units3 in a given ring R. The
second group in the ring R is the multiplicative group of units in R, i.e., the
group (R×, ·) or just R× for short. In particular, for any positive integer n,
we have the multiplicative group Z×

n of units in the ring Zn. The abelian
group Z×

n is of extreme importance for modern cyptography.

(g) Let F be any field. Then by definition F× = F − {0}, the set of all
nonzero elements of F , since every nonzero element of a field is invertible.
So the previous example gives in this case the group (F×, ·) = (F − {0}, ·),
which is called the multiplicative group of the field F .

(h) The trivial group is the set {e} consisting of only one element, with
e ∗ e = e.

The number of elements of a group is called its order.

17.7 Definition. Let (G, ∗) be a group. The order of the group is the
cardinality |G| of the set G. If the set G is an infinite set then we often
write |G| = ∞ and call G an infinite group, otherwise G is a finite group.

The word order is also used in group theory in another way, as follows,
when speaking about an element of a group.

17.8 Definition. Let a ∈ G where (G, ∗) is a group. The order of a is the
least positive integer r such that a combined with itself r times yields the
identity element e. If no such r exists, then the order is defined to be ∞.

3A unit is an invertible element.
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In any group, the order of the identity element is always 1. Since the
word order has two different meanings within group theory, we always have
to determine its usage from the context.

17.9 Lemma. If a is an element of order r in a group (G, ∗), then the
inverse of a is equal to a ∗ · · · ∗ a (r − 1 factors) obtained by combining a
with itself r − 1 times.

Proof. Let b be equal to a ∗ · · · ∗ a (r − 1 factors). Then it is clear that
a ∗ b = e = b ∗ a. It follows from uniqueness of inverses that b equals the
inverse of a.

Now we discuss laws of exponents in groups. We need to distinguish
between multiplicative and additive groups, which use different notation. If
a is an element of a multiplicative group, then we define an to be aa · · · a (n
times repeated) for any positive integer n, we define a0 = 1, and we define
a−n = (a−1)n. Note that (an)−1 = a−n. Moreover, we have

am an = am+n, (am)n = amn

for any m,n ∈ Z.
In an additive group we have to use a different notation. In this case we

define na to be a+ a+ · · ·+ a (n summands) for any positive integer n, we
define 0a = 0, and we define (−n)a = n(−a). Note that −(na) = (−n)a.
Moreover,

ma+ na = (m+ n)a, n(ma) = (nm)a

for any m,n ∈ Z. In an additive group, “powers” are written as multiples,
because in ordinary arithmetic repeated addition is written as a multiple
while repeated multiplication is written as a power.

17.10 Remark. We can rephrase Definition 17.8 in terms these notations
as follows. In a multiplicative group the order of a is the least positive
integer r such that ar = 1. In the additive case the order of a is the least
positive integer r such that ra = 0.

Now we define the important notion of isomorphism of groups.

17.11 Definition. Let (G, ∗) and (H,#) be given groups. An isomorphism
of G onto H is any bijection f : G → H such that f(a ∗ b) = f(a)#f(b) for
all a, b ∈ G. Whenever such an f exists then we say that G is isomorphic
to H, and write G ∼= H or G ≃ H (interchangeably).
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So an isomorphism is a bijective mapping from one group to the other
which matches up products in the two groups. If one group is an additive
group and the other a multiplicative group then this means that sums get
matched with products.

If two groups are isomorphic then they are essentially the same group,
except for the form of their elements. In particular, isomorphic groups must
have the same structural properties (i.e, they have same order, the same
number of subgroups, etc). The following is easy to check.

17.12 Theorem. Isomorphism of groups is an equivalence relation on the
class of groups: it is reflexive, symmetric, and transitive.

17.13 Example. It is easy to check that the set (R+, ·) of all positive real
numbers is a group under multiplication. We claim that the multiplicative
group (R+, ·) is isomorphic to the additive group (R,+) of real numbers. The
isomorphism is given by the natural logarithm function x 7→ lnx. We know
this function is invertible (its inverse is the exponential function x 7→ ex) so it
is a bijection of R+ onto R. Furthermore, the equation ln(ab) = ln(a)+ln(b)
says that products in R+ match up with sums in R, so the function ln is
indeed a group isomorphism, as claimed.

If a group (G, ∗) is finite then it may be described by giving its complete
multiplication table. (Replace multiplcation by addition if it is an additive
group.) For instance, the addition table of (Z4,+) and the multiplication
table of the cyclic group G = ⟨α⟩ generated by a 4-cycle α are displayed in
the tables below

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 1 α α2 α3

1 1 α α2 α3

α α α2 α3 1
α2 α2 α3 1 α
α3 α3 1 α α2

where we write the numbers 0, 1, 2, 3 as a shorthand for the corresponding
residue classes [0], [1], [2], [3] in Z4. Note that the correspondence

[0] → 1 = α0, [1] → α = α1, [2] → α2, [3] → α3

defines an isomorphism between the two groups. In a more succinct notation,
the isomorphism is defined by f([x]) = αx for x = 0, 1, 2, 3.

The multiplication table of a finite group has the property that the
elements in any row of the table form a permutation of the elements of
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any other row. The same is true of the columns of the table. In particular,
no element appears twice in any row or any column. You should be able to
show how these claims follow from the group axioms.

Consider a group of order 2. Assume that its binary operation is written
multiplicatively, so G = {1, a} as a set, where 1 is the identity element and
a ̸= 1 (else the group would have order 1). Then necessarily a2 = 1, because
a2 = a implies a = 1. So the group multiplication table must look like the
one on the left below:

· 1 a

1 1 a
a a 1

+ 0 1

0 0 1
1 1 0

The table on the right is the addition table for the additive group (Z2,+). It
should be clear that the two groups are isomorphic. This analysis shows that
any group of two elements must be isomorphic to Z2. This argument can
be extended to prove that any group of three elements must be isomorphic
to Z3.

Exercises

17.1. Explain your reasoning for:

(a) Is N = {1, 2, 3, . . . } a group under addition? If we include 0 is it a
group?

(b) Is N = {1, 2, 3, . . . } a group under multiplication?

(c) Is the set Z of integers a group under addition?

(d) Is Z a group under multiplication?

(e) Is Z− {0} a group under multiplication?

17.2. What is wrong with writing a
b for ab−1 in a (nonabelian) multiplicative

group? If you think there is nothing wrong with it, then how will you write
b−1a when ab−1 ̸= b−1a?

17.3. Prove that any group of three elements must be isomorphic to the additive
group Z3 by analyzing its multiplication table.

17.4. Suppose that G = {1, a, b, c} is a multiplicative group of four elements in
which 1 is the identity element. By analyzing the possible multiplication
tables, prove that G is isomorphic to either (Z4,+) or to a group in which
a2 = b2 = c2 = 1. (The latter group is called the Klein 4-group.)

17.5. List the elements in the following multiplicative groups:

(a) (Z×, ·), (b) (Z×
6 , ·), (c) (Z×

8 , ·), (d) (Z×
15, ·).

17.6. Give multiplication tables for the groups in the previous problem.
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17.7. Prove that |Z×
n | = φ(n), where φ(n) is Euler’s phi-function from number

theory.

17.8. Prove that the elements in any row of the group multiplication table of a
finite group G form a permutation of the elements of the first row. Then do
the same for columns.

17.9. In this problem, we write Zn for the additive group (Zn,+). Find the order
of:

(a) 1 in Z7, (b) 2 in Z7, (c) 1 in Z10, (d) 2 in Z10, (e) 3
in Z10.

17.10. In this problem, we write Zn for the additive group (Zn,+). Find the order
of any a ∈ Zn and prove your answer.

17.11. In this problem, we write Z×
n for the multiplicative group (Z×

n , ·) of units.
Find the orders of:

(a) 1, 2, 3, 4, 5, 6 in Z×
7 , (b) 1, 2, 4, 5, 7, 8 in Z×

9 , (c) 1, 3, 7, 9 in Z×
10.

17.12. (The circle group) Let S1 be the set of all points on the usual unit circle in
the plane R2. Show that S1 is a group under the law of combination given
by

(cos θ, sin θ) ∗ (cos θ′, sin θ′) = (cos(θ + θ′), sin(θ + θ′)).

Be sure to give a formula for the inverse of elements of this group, and prove
that they really are inverses.

17.13. Show that the circle group of the previous problem is isomorphic to the
matrix group SO(2).

17.14. Find an isomorphism of the multiplicative group Z× onto the additive group
Z2.

17.15. Consider the set G of all 2× 2 real matrices of the form [ a −b
b a

].

(a) Show that G is a group under ordinary matrix addition, and find an
isomorphism from the additive group (C,+) onto G.

(b) Now let G′ be the subset of G consisting of all elements of G except
the zero matrix. Show that G′ is a group under ordinary matrix mul-
tiplication.

(c) Find an isomorphism from the multiplicative group (C×, ·) onto G′.

17.16. Prove part (f) of Theorem 17.5 using right cancellation instead of left can-
cellation.

17.17. Prove that isomorphism of groups is an equivalence relation on the class of
groups (Theorem 17.12).

17.18. Prove that if G is a group in which every element (except the identity) has
order 2 then G must be abelian.

17.19. (Monoids) A monoid is a set M along with a binary operation ∗ : M×M →
M such that ∗ is associative and there is an identity element e ∈ M . Show
that (N,+) and (Z, ·) are monoids but not groups.

17.20. Show that a set R with two binary operations +, · is a ring if and only if the
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following three properties hold:

(a) (R,+) is an additive abelian group. Denote its identity element by 0.

(b) (R, ·) is a multiplicative monoid (see Problem 17.19 for the definition
of monoid). Denote its identity element by 1.

(c) Addition and multiplication are connected by the distributive laws:
a(b+ c) = ab+ ac and (b+ c)a = ba+ ca, for all a, b, c ∈ R.

Thus, one could take the three properties as the definition of ring.

17.21. Show that a set F with two binary operations +, · is a field if and only if
the following four properties hold:

(a) (F,+) is an additive abelian group. Denote its identity element by 0.

(b) (F − {0}, ·) is a multiplicative abelian group. Denote its identity ele-
ment by 1.

(c) 1 ̸= 0.

(d) Addition and multiplication are connected by the distributive law:
a(b+ c) = ab+ ac, for all a, b, c ∈ F .

Thus, one could take the four properties as the definition of field.
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18 Subgroups

Finding subgroups inside known groups is an important way of finding new
examples of groups.

18.1 Definition. Let (G, ∗) be a group. A subsetH ofG is called a subgroup
of G if (H, ∗) is a group in its own right. We write H < G (or H ≤ G
interchangeably) to denote that H is a subgroup of G. A subgroup H is a
proper subgroup of G (written as H ≨ G) if H ̸= G.

By definition, permutation groups are subgroups of some Sn and matrix
groups are subgroups of some GLn(F ), where F is a field. So we have already
seen many examples of subgroups.

Note that every group is regarded as a subgroup of itself. (So in the
above notation, writing G < G is perfectly valid.) In any group the subset
consisting solely of the identity element is always a subgroup; this subgroup
is called the trivial subgroup.

In order for a given subset H of a group G to be a subgroup, it is clearly
necessary that the binary operation ∗ : G × G → G restricts to a binary
operation ∗ : H ×H → H. This is just another way of saying that H must
be closed under products.

The following theorem covers both the multiplicative and additive cases
together. In the latter case, you should read “sum” for “product” in the
theorem, because a ∗ b = a+ b when the operation ∗ is equal to +.

18.2 Theorem (The subgroup criterion). Let H be a nonempty subset of
a given group (G, ∗). Then H is a subgroup of G if and only if H is closed
under products and inverses. (Closure under products means that a ∗ b ∈ H
whenever a, b ∈ H, and closure under inverses means that H contains the
inverse of each of its elements.)

Proof. ( =⇒ ) Suppose that H is a subgroup of G. Then the fact that H is a
group in its own right means that when we restrict the operation ∗ : G×G →
G to the subset H ×H, it induces a binary operation ∗ : H ×H → H. This
is equivalent to saying that H is closed under products. Also, the fact that
axiom (G3) holds for H means that each a ∈ H has an inverse a′ in H; that
must also be its inverse in G since inverses in G are unique. This implies
that H is closed under inverses.

( ⇐= ) Suppose that H is a nonempty subset of G which is closed under
products and inverses. Then the restriction of ∗ to H × H maps into H,
and thus defines a binary operation on H. Axiom (G1) is automatic in H
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since it holds in the bigger set G. Axiom (G3) for H is just closure under
inverses, which is true by assumption. Finally, closure under products and
inverses implies that the identity e is in the set H, since there must be some
a ∈ H (because H is nonempty) and then its inverse a′ is in H and thus
a∗a′ = e ∈ H by closure under products. This proves axiom (G2) for H.

The following result is a slightly simplified version of the subgroup cri-
terion.

18.3 Theorem (Simplified subgroup criterion). Let H be a nonempty sub-
set of a given group G, and write b′ for the inverse of b ∈ G. Then H is a
subgroup of G if and only if a ∗ b′ ∈ H for all a, b ∈ H.

Proof. ( =⇒ ) Suppose H < G. Then by the subgroup criterion, for any
a, b ∈ H it follows that b′ ∈ H and hence a ∗ b′ ∈ H.

( ⇐= ) For the converse, suppose that H is a nonempty subset and
a∗b′ ∈ H for all a, b ∈ H. Since H is non-empty there is at least one element
c ∈ H. Hence c ∗ c′ ∈ H, so the identity e ∈ H. Hence b′ = e ∗ b′ ∈ H
for every b ∈ H, proving that H is closed under inverses. Finally, if a, b are
any elements of H, then b′ ∈ H as we have just shown. Note that (b′)′ = b,
so b = d′ where d = b′ ∈ H. Hence the product a ∗ b = a ∗ d′ must be an
element of H. This shows that H is closed under products. So H < G by
the subgroup criterion.

The criterion for finding subgroups of a finite group is even simpler: we
only have to check closure under products.

18.4 Corollary (Subgroup criterion for finite groups). LetH be a nonempty
subset of a given finite group G. Then H is a subgroup of G if and only if
a ∗ b ∈ H for all a, b ∈ H.

Proof. Every element of a finite group must have finite order, so closure
under products implies also closure under inverses. (By Lemma 17.9, if a
has order r then the inverse of a is obtained by combining a with itself r−1
times.)

18.5 Example. We compute the subgroups of S3, the symmetric group on
3 letters, using the finite subgroup criterion. We have (in the cycle notation)

S3 = {(1), (1, 2), (2, 3), (1, 3), (1, 2, 3), (3, 2, 1)}.

Here we use (1) for the identity permutation. The smallest subgroup of
S3 is the trivial subgroup {(1)}. Next we have the two element subgroups
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{(1), (1, 2)}, {(1), (2, 3)}, and {(1), (1, 3)}. The subgroup {(1), (1, 2, 3), (3, 2, 1)}
is of order 3. Finally, we have S3 itself, a subgroup of order 6. It is easy to
check that these are the only subgroups of S3.

18.6 Theorem. The intersection of any number of subgroups of a given
group G is always a subgroup of G.

Proof. This is an application of the subgroup criterion. Suppose that I is
some indexing set and Hi ≤ G for each i ∈ I. Then we need to show that
K =

⋂
i∈I Hi is a subgroup of G. Note that K is nonempty since the identity

element belongs to each subgroup Hi and hence belongs to the intersection
K. Suppose that x, y ∈ K. Then x, y ∈ Hi for all i ∈ I. Since Hi is a
subgroup, this means that both x ∗ y and the inverse of x are in Hi, for all
i ∈ I, so x ∗ y ∈ K and the inverse of x is in K. By the subgroup criterion,
K is a subgroup of G.

In contrast, unions of subgroups are usually not subgroups.

18.7 Definition. If S is any set of group elements in some group G then ⟨S⟩
is the smallest subgroup of G containing the elements of S. The subgroup
⟨S⟩ is called the subgroup generated by the set S. In particular, if a ∈ G is
a group element, then we write ⟨a⟩ short for ⟨{a}⟩; this is called the cyclic
subgroup generated by a.

18.8 Examples. 1. If a ∈ G has finite order r, then ⟨a⟩ = {1, a, a2, . . . , ar−1}
if G is a multiplicative group, and ⟨a⟩ = {0, a, 2a, . . . , (r − 1)a} if G is an
additive group. In either situation, ⟨a⟩ is isomorphic to the abstract cyclic
group Cr of order r.

2. In the additive group Z of integers, we have ⟨1⟩ = Z and ⟨−1⟩ = Z.
Hence Z is a cyclic group under addition). Furthermore, ⟨0⟩ = {0} (the
trivial group) and ⟨2⟩ = ⟨−2⟩ = 2Z (the subgroup of even integers).

3. In the multiplicative group R× of nonzero real numbers, the subgroup
⟨π⟩ = {πk | k ∈ Z}. This group is a proper subgroup of R×, and it is
isomorphic to the additive group Z. More generally, for any chosen element
a ∈ R×, it can be seen that ⟨a⟩ = {ak | k ∈ Z}.

4. Even more generally, suppose that a ∈ R× is an element of infinite
order in the multiplicative group of units in a ring R. Then ⟨a⟩ = {ak | k ∈
Z} is an infinite cyclic group isomorphic to the additive group Z.

18.9 Definition. If S is a set of elements of a group G, we say that G is
generated by S if G = ⟨S⟩. If there is a finite set S with this property then
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we say that G is finitely generated. A group is called cyclic if it is generated
by a single element: i.e., if G = ⟨a⟩ for some a ∈ G.

If G is generated by a set S, then every element of G can be expressed
as a product of elements of S and their inverses.

18.10 Examples. 1. The symmetric group Sn is generated by the set of
transpositions it contains.

2. The general linear group GL(n) is generated by the set of elementary
matrices.

3. The dihedral group Dn is generated by the two elements r, d defined
earlier, so Dn = ⟨r, d⟩. (Recall that r is a basic rotation and d a reflection.)

4. The additive group (Z,+) of integers is cyclic, because Z = ⟨1⟩. So is
the additive group (Zn,+) of integers modulo n, because Zn = ⟨[1]⟩.

5. Every finite group is finitely generated. So is every cyclic group
(including any infinite cyclic group).

6. The additive group R of real numbers is not finitely generated.

7. The matrix group GL(n) is not finitely generated. (We have proved
that the set S of all elementary matrices generates GL(n), but S is an infinite
set. It turns out that no finite generating set exists, but it isn’t so easy to
prove.)

Next we investigate another way to find subgroups from subsets of ele-
ments of a given group.

18.11 Definition. Suppose that S is a set of elements of a group (G, ∗). The
centralizer of S in G is the subgroup ZG(S) = {x ∈ G | x∗s = s∗x for all s ∈
S}. The center of G is Z(G) = ZG(G) = {x ∈ G | x∗g = g∗x for all g ∈ G},
the centralizer of G in itself. If a ∈ G then we write ZG(a) short for ZG({a}).

It is an exercise to verify that centralizers really are subgroups. In par-
ticular, this implies that the center Z(G) of a group G is always a subgroup.
The center is, by definition, the set of elements that commute with all the
elements of the group.

Exercises

18.1. Show that the set {±1,±i} is a subgroup of the multiplicative group C×. Is
it a cyclic group?

18.2. Show by example that a union of two subgroups need not be a subgroup.
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18.3. Show that the set 2Z of all even integers is a subgroup of the additive group
Z, but the set 2Z+ 1 of all odd integers is not a subgroup.

18.4. Show that for any integer n,

(a) the set nZ of all multiples of n is a subgroup of the additive group Z.
(b) the subgroup nZ is isomorphic to Z itself.

(c) these are the only subgroups of Z; i.e., every subgroup of Z is of the
form nZ for some integer n.

18.5. If G is any subgroup of GL(n), let H = {A ∈ G | detA = ±1}. Prove that
H < G.

18.6. Let F be a field. If G is any subgroup of GLn(F ), let H = {A ∈ G | detA =
±1}. Prove that H < G.

18.7. (Abstract Klein 4-group) The abstract Klein 4-group K may be defined as
the (unique) group {1, a, b, c} of four elements such that 1 is the identity
and a, b, c all have order 2.

(a) Show that this description determines the groupK uniquely, by writing
out its only possible multiplication table.

(b) Find all the subgroups of K.

18.8. Prove that if α is an element of order n in a permutation group G then the
subgroup ⟨α⟩ generated by α is isomorphic to the additive group (Zn,+).

18.9. (Classification of cyclic groups) Prove that if (G, ∗) is a cyclic group then
it is isomorphic with either the additive group Zn for some n or with the
additive group Z of all integers.

18.10. Apply the previous exercise to deduce that the additive group (R,+) is not
cyclic.

18.11. Show by contradiction that the additive group (Q,+) is not cyclic.

18.12. Show that every subgroup of a cyclic group must be cyclic. [Hint: Use the
result of Exercise 18.9.]

18.13. Show that the group (Zn,+) is generated by [a] ∈ Zn if and only if a, n
are relatively prime. Use this to deduce that a cyclic group of order n has
exactly φ(n) generators. [Hint: Use the result of Exercise 18.9 for the second
part.]

18.14. If H is a subgroup of a group (G, ∗) and a ∈ G, let a ∗H ∗ a′ = {a ∗ h ∗ a′ |
h ∈ H}, where a′ is the inverse of a.

(a) Show that a ∗H ∗ a′ is a subgroup of G.

(b) If H is finite, say |H| = n, then what is |a ∗H ∗ a′|?
18.15. Show that the dihedral group Dn (n ≥ 3) is not cyclic.

18.16. Show that if G is a group of order n then G is cyclic if and only if it has an
element of order n.

18.17. Write Zn for the additive group (Zn,+). Show that Zn = ⟨a⟩ for a ∈ Zn if
and only if gcd(a, n) = 1.

18.18. Show that the multiplicative group F×
7 is cyclic by finding a generator. Do
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the same for F×
13.

18.19. Is the multiplicative group Z×
8 cyclic? Same question for Z×

10. Justify your
answers.

18.20. Find a minimal generating set for the Klein 4-group (see Exercise 18.7).

18.21. Show that the matrix group O(2) is generated by the set SO(2)∪{A}, where
A ∈ O(2) is any improper orthogonal matrix.

18.22. Show that if a, b are elements of some multiplicative group G then ⟨a⟩ < ⟨b⟩
if and only if a = bk for some integer k.

18.23. (The quaternion group) The quaternion group is the groupQ = {±1,±i,±j,±k}
of order 8 defined by the following multiplication table:

· 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k

−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

in which 1 is the identity element, i, j, k all behave like imaginary units in
that i2 = j2 = k2 = −1, and products of any pair chosen from i, j, k behave
like cross products of the standard unit vectors in R3.

(a) Find the cyclic subgroups ⟨−1⟩, ⟨i⟩, ⟨j⟩, and ⟨k⟩.
(b) Show that Q is not cyclic.

(c) Find a minimal set of generators of Q, and justify your answer.

(d) Compute the center Z(Q).

Note: The quaternion group Q is related to Hamilton’s quaternions, which
puts a division ring structure on Euclidean four dimensional space.

18.24. Let C = {z ∈ C : |z| = 1} be the set of all complex numbers of unit norm,
where as usual the norm (length) of a complex number z = x+ iy is defined

to be |z| =
√
x2 + y2. By Euler’s identity eiθ = cos θ + i sin θ (valid for all

θ ∈ R) it follows that C = {eiθ | θ ∈ R}.
(a) Prove that C is a subgroup of the multiplicative group C×.

(b) Find an isomorphism from S1 onto C, where S1 is the circle group
defined in a previous exercise.

18.25. If G = Dn find ZG(r) where r is the basic rotation. Then find ZG(f) where
f is any reflection.

18.26. Prove that if a ∈ G then ⟨a⟩ < ZG(a).

18.27. Prove that ZG(S) < G for any set S of elements in a group G. Why does
this also prove that the center Z(G) < G?
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18.28. Compute the center of D4 and justify your answer.

18.29. Show that Z(Sn) for n ≥ 3 is the trivial group. What is Z(S2)?
18.30. Prove that Z(G) is always abelian.

18.31. Show that Z(Dn) has order 1 or 2 depending whether n is odd or even,
respectively.

18.32. Prove that Z(G) = G if and only if G is abelian.

18.33. This problem is about permutations, written in terms of the cycle notation.

(a) Show that (1, 3) = (2, 3)(1, 2)(2, 3).

(b) Show that (1, 4) = (3, 4)(2, 3)(1, 2)(2, 3)(3, 4).

(c) Prove that for j > 1 we have (1, j) =

(j − 1, j)(j − 2, j − 1) · · · (1, 2) · · · (j − 2, j − 1)(j − 1, j).

(d) Prove that for i < j we have (i, j) =

(j − 1, j)(j − 2, j − 1) · · · (i, i+ 1) · · · (j − 2, j − 1)(j − 1, j).

This shows that it is possible to write any transposition as a product
of adjacent ones; i.e., ones of the form (k, k + 1).

18.34. Prove that Sn is generated by the set {(1, 2), (2, 3), . . . , (n−1, n)} of adjacent
transpositions. [Hint: Use Problem 18.33.]

18.35. (a) Show that if α = (1, 2), β = (1, 2, . . . , n) are permutations written
in the cycle notation then for any 1 < i < n we have (i, i + 1) =
βi−1α(βi−1)−1 = βi−1αβn−i+1.

(b) Prove that Sn is generated by the set S = {(1, 2), (1, 2, 3, . . . , n)}.
[Hint: Use part (a) and the result of the preceding exercise.]
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19 Cyclic groups

Cyclic groups are the simplest groups to understand, and they appear as
subgroups of any group. We collect their main properties here in one place,
for ease of reference.

Recall that a group is called cyclic if it is generated by a single element.
In multiplicative notation, if x is a generator, then the cyclic group generated
by x is the set

⟨x⟩ = {xk : k ∈ Z}
of all integer powers of x. This could be a cyclic subgroup in some larger
group, or an abstract cyclic group. There are two cases to be analyzed:
either the generator x has infinite order, or not.

If the generator x has infinite order (i.e., xk ̸= 1 for all positive integers
k) then all the integer powers of x must be distinct, because if xj = xk

for j ̸= k then xj−k = xk−j = 1, contradicting the assumption that x has
infinite order. Thus the group ⟨x⟩ is infinite. In that case, we claim that
it is isomorphic to the additive group Z of integers. An isomorphism is
defined by the rule f(k) = xk. This is a bijection, with inverse g defined by
g(xk) = k; you can easily check that f(g(xk)) = xk and g(f(k)) = k for all
k. Since f goes from an additive group to a multiplicative one, we have to
check that f(j + k) = f(j)f(k), which is true since xj+k = xjxk. Since f is
a bijection and f(j + k) = f(j)f(k) for all j, k ∈ Z, it follows that f is an
isomorphism, as claimed.

The remaining possibility is that x has finite order, say x has order n for
some positive integer n. Then the set of powers

⟨x⟩ = {xk : k ∈ Z} = {xk : k = 0, 1, . . . , n− 1}

collapses to a finite set since xn = 1. It is customary to denote this finite
group by Cn. People often write Cn = ⟨x : xn = 1⟩ to indicate that Cn

is generated by an element x satisfying the relation xn = 1. The relation
xn = 1 implies that xj = xk in Cn if and only if j ≡ k (mod n). Thus,
powers of x are multiplied in the group Cn by adding their exponents modulo
n. That is, we have

xaxb = xc in Cn where c = resn(a+ b).

Recall that [a]+[b] = [a+b] in the additive group Zn. Equivalently, [a]+[b] =
[c] in Zn where c = resn(a + b) is the residue modulo n of a + b. So the
bijection f : Zn → Cn defined by the rule f([k]) = xk is an isomorphism,
because f([j] + [k]) = f([j])f([k]) for all k = 0, 1, . . . , n− 1.

95



To summarize, we have proved the following important result.

19.1 Theorem. Any infinite cyclic group is isomorphic to the additive
group Z of integers. Any finite cyclic group is isomorphic to the additive
group Zn of integers modulo n, for some positive integer n.

Since isomorphism is transitive, this means also that all infinite cyclic
groups are isomorphic, and all finite cyclic groups of the same order are
isomorphic. So we now understand all cyclic groups, up to isomorphism.

The above theorem gives important information about all groups, be-
cause if G is any group and x ∈ G then H = ⟨x⟩ is a cyclic subgroup of
G, hence is isomorphic to Z or to some Zn. Furthermore, any result proved
about cyclic groups applies equally well to the cyclic subgroups found in any
group.

19.2 Theorem. Let x be an element of a group G. If x has order n then
xk has order n/g, where g = gcd(n, k). If x has infinite order then xk has
infinite order.

Proof. Suppose |x| = n. Because ⟨x⟩ is isomorphic to the additive group Zn,
with xk corresponding to [k], it suffices to show that the order of [k] in Zn

is n/g. By definition of order, the order of [k] is the least positive integer m
such that m[k] = [0]; i.e., the least positive integer m such that [mk] = [0]. If
k > 0 then mk must be the least common multiple of n, k: mk = lcm(n, k).
Hence m = lcm(n, k)/k. Now a theorem from basic number theory says that
nk = gcd(n, k) lcm(n, k), so m = lcm(n, k)/k = n/ gcd(n, k), and the proof
is finished in case k > 0. If k = 0 then the result is trivial since g = n and
the identity has order 1. If k < 0 then we can use the fact that the order of
x is the same as the order of x−1. This implies that the order of xk is the
same as the order of x−k. Since gcd(n, k) = gcd(n,−k), the stated formula
works in the negative case as well.

Finally, if x has infinite order then so does xk, because assuming that xk

has finite order leads immediately to a contradiction.

Recall that two integers k, n are said to be relatively prime if gcd(n, k) =
1. The Euler phi function φ(n) is defined to be the number of integers k in
the range 1 ≤ k ≤ n − 1 such that k is relatively prime to n. It is easily
proved that:

(i) If m,n are relatively prime then φ(mn) = φ(m)φ(n).

(ii) If p is prime then φ(pt) = pt − pt−1.
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These two properties can be used to calculate φ(n) whenever we can find
the prime factorization of n.

The next result follows easily from the previous theorem.

19.3 Corollary. (a) The order of any element of Cn divides n.

(b) If x ∈ Cn has order n then ⟨xj⟩ = ⟨xk⟩ ⇐⇒ gcd(n, j) = gcd(n, k)
and |xj | = |xk| ⇐⇒ gcd(n, j) = gcd(n, k).

(c) If x ∈ Cn has order n then xk generates Cn if and only if gcd(n, k) = 1.
So Cn has φ(n) distinct generators.

(d) [k] in Zn generates Zn if and only if gcd(n, k) = 1. So the additive
group Zn has φ(n) distinct generators.

Proof. This is left to you as an exercise.

We also get information about the multiplicative groups Z×
n of units,

whenever they are cyclic.

19.4 Corollary. If the multiplicative group Z×
n is cyclic, then it is isomor-

phic to the additive group Zφ(n) and it has φ(φ(n)) generators.

Proof. We already proved that Z×
n = {[k] : gcd(n, k) = 1}, so |Z×

n | = φ(n).
If it is cyclic then it must be isomorphic to Zφ(n) by the previous theorem.
Part (c) of the preceding corollary says that there are φ(φ(n)) generators.

Of course, this result raises the question: for which values of n is the
multiplicative group Z×

n cyclic? Note that Z×
n is cyclic if and only if an

element of order φ(n) exists in the group. Such elements are called primitive
roots.

19.5 Definition. A congruence class [a] ∈ Z×
n is a primitive root in Z×

n if
it has order φ(n); i.e., if it generates the group. Furthermore, an integer a
is called a primitive root modulo n if its residue class [a] is a primitive root
in Z×

n .

Wikipedia has a nice article on primitive roots in modular arithmetic,
for those who wish to know more. The answer to our question is provided
by the following theorem from classical number theory.

19.6 Theorem (primitive roots theorem). There is a primitive root in the
multiplicative group Z×

n if and only if n = 2, 4, pt or 2pt where p is an odd
prime.
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We leave the proof, which is elementary but somewhat time-consuming,
to the number theory textbooks. Primitive roots are used in cryptography,
so the theorem has practical applications.

We now return to the study of cyclic groups in general.

19.7 Theorem. Every subgroup of an infinite cyclic group is infinite cyclic.
Every subgroup of a finite cyclic group is finite cyclic.

Proof. It suffices to prove the first statement for the additive cyclic group
Z, since any infinite cyclic group is isomorphic to Z. Let G be any subgroup
of Z. If G is the trivial subgroup {0} then we are done, as {0} = ⟨0⟩ is
cyclic. Otherwise, G must have at least one positive element, so by the
well-ordering principle of natural numbers, the set of positive elements of G
has a least member, say k. Then we claim that G = ⟨k⟩. Clearly G ⊃ ⟨k⟩
by closure, so it suffices to prove the reverse inclusion. Let m ∈ G. By
the division algorithm, there are unique integers q, r such that m = qk + r
and 0 ≤ r < k. Then r = m − qk ∈ G by closure, since m, k ∈ G. Since
k is the least positive integer in G, it follows that r = 0. Hence m = qk
and thus m ∈ ⟨k⟩. This proves the reverse inclusion that establishes the
equality G = ⟨k⟩, which implies that G = kZ is the subgroup consisting of
all multiples of k. This is infinite cyclic.

It suffices to prove the second claim for the additive group Zn, since any
cyclic group of order n is isomorphic to Zn. We can use exactly the same
argument as above to see that if G is any subgroup of Zn then G is either
the trivial subgroup or G = ⟨[k]]⟩, where k is the least positive element of
G, where we represent elements of Zn by their residues 0, 1, 2, . . . , n−1.

19.8 Corollary. Let G be a finite cyclic group of order n. Then the order
of any subgroup must divide n. Furthermore, G has precisely one subgroup
of order k for every divisor k of n.

Proof. If H is a subgroup of G then H is cyclic by the previous theorem.
Thus H is generated by some power xk where x is a generator of G. We
proved in Theorem 19.2 that the order of xk is n/g where g = gcd(n, k), so
|xk| is a divisor of n. Since the order of xk is the same as the order of the
subgroup it generates, the order of H is a divisor of n.

If k | n then ⟨xn/k⟩ is a subgroup of order k, since |xn/k| = k. Further-
more, this is the only subgroup of order k.

19.9 Corollary. For any positive divisor d of n, the number of elements of
order d in Cn or Zn is φ(d).
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Proof. Since Cn
∼= Zn, it suffices to prove this for Cn. By the previous

corollary, there is precisely one subgroup of order d, say ⟨y⟩ ∼= Cd for some
y ∈ Cn, where y has order d. Since this is the unique subgroup of order d,
it must contain every element of Cn of order d. By Corollary 19.3(c), there
are precisely ϕ(d) generators of Cd, and they are the elements of order d in
Cn.

19.10 Example. The number of elements of order 20 in the cyclic group
Z900 is φ(20) = φ(4 · 5) = (4− 2)(5− 1) = 8. The unique subgroup of order
20 is the subgroup ⟨[900/20]⟩ = ⟨[45]⟩.

Exercises

19.1. Compute the following:

(a) The number of generators of Z20, Z100, and Z1000.

(b) The number of generators of C20, C100, and C1000.

(c) The order of [235] in Z1000 and the order of x235 in the abstract cyclic
group C1000 = ⟨x : x1000 = 1⟩.

(d) The number of elements of Z1000 or C1000 of order 40.

19.2. Compute the following:

(a) The order of the multiplicative group Z×
250.

(b) The number of generators of the multiplicative group Z×
250.

(c) The number of elements of Z×
250 of order 25.

19.3. Prove Corollary 19.3.

19.4. Compute the following:

(a) The order of the multiplicative group F×
499.

(b) The number of generators of the multiplicative group F×
499.

(c) The number of elements of F×
499 of order 41.

19.5. The fact that the multiplicative group F×
p of units in a finite field of p

elements (where p is a prime) is always cyclic is of great importance in public-
key cryptography. But actually finding a generator is sometimes difficult.
Try to find a generator of the group F×

499. You may wish to use a computer
to aid your search.

19.6. The Elgamal cryptosystem works as follows, in order to setup secure com-
munication from Bob (or anyone) to Alice.4

(a) First Alice chooses a very large prime p and finds a generator [g] of
the cyclic group F×

p . She chooses an integer 1 ≤ k ≤ p− 1 at random

and computes [h] = [g]k in the multiplicative group F×
p . She publishes

4Cryptographic tradition demands that the two parties are named Alice and Bob. Also
by tradition, the evil attacker trying to decrypt the secret messages is named Eve.
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the data KA = (p, g, h) as her public-key and keeps the private-key k
secret.5

(b) To encrypt a secret message [x] ∈ F×
p to send to Alice, Bob chooses

a random integer 1 ≤ m ≤ p − 1 and computes c1 = [g]m and c2 =
[x] · [h]m in the group F×

p . The encrypted message that he sends to
Alice is the pair (c1, c2).

(c) When Alice receives the encrypted ciphertext message (c1, c2), she
computes the product (ck1)

−1 · c2 in the group F×
p , using her secret key

k. Note that Alice knows about the extended Euclidean algorithm, so
computing a modular inverse is no problem for her.

Prove that this cryptosystem works; that is, prove that (ck1)
−1 · c2 = [x] in

the multiplicative group F×
p .

19.7. In order for an evil attacker Eve to break an Elgamal cryptosystem, she needs
to solve the discrete logarithm problem, which is the problem of finding an
exponent k such that gk = h in a cyclic group Cn, where g is a generator
of the group. Write k = logg h to mean that gk = h in Cn. Note that the
value k = logg h is only defined modulo n. Put on your evil attacker hat,
and find the following discrete logarithms:

(a) logx x
27 in C10 = ⟨x : x10 = 1⟩.

(b) logx9 x271 in C50 = ⟨x : x50 = 1⟩.
(c) log[2][9] in Z×

11. Use trial and error.

(d) log10 37 in Z×
47. You may want to seek help from a computer.

Remark. It is truly remarkable that cyclic groups can be used to construct a
cryptosystem sufficiently secure that it is used worldwide for secure internet
transmissions. It is believed that solving the discrete logarithm problem in
the cyclic group F×

p is so hard a problem that even a supercomputer would
take billions of years to finish, assuming that the prime p is sufficiently6

large. Unfortunately, this belief remains unproven.

5This is a one-way system, in the sense that it can be used only by Bob (or anyone)
to send secret messages to Alice. If Bob wishes to receive secret messages, then he must
setup his own public-key KB by following the same steps as Alice. After Bob publishes
his public-key, Alice (or anyone) can use it to send secret messages to Bob.

6On the order of 1500 decimal digits for current technology.
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Chapter 6

Quotients and
Homomorphisms

20 Cosets

We now introduce cosets, which will be used to prove Lagrange’s theorem
and to construct quotient groups. Cosets are a fundamental concept in
group theory.

20.1 Definition. If H is a subgroup of a group (G, ∗) and a ∈ G then we
write a ∗H = {a ∗ x : x ∈ H} and H ∗ a = {x ∗ a : x ∈ H}. These sets are
called left and right cosets of H in G, respectively.

If (G, ·) is a multiplicative group then we write aH and Ha for the left
and right cosets of H, whereas if (G,+) is a additive group then we write
them as a+H and H + a instead.

20.2 Examples. 1. Let H = {1, r, · · · , rn−1} be the rotation subgroup of
the dihedral group Dn. Then dH = {d, dr, . . . , drn−1}, where d ∈ Dn is
any reflection, and Hd = {d, rd, . . . , rn−1d}. So dH = Hd. Furthermore, if
a ∈ H is any rotation, then aH = H and Ha = H.

2. Let H = 2Z = {2k : k ∈ Z} be the subgroup of even integers in the
additive group (Z,+). Then 1 +H = 1 + 2Z = {2k + 1 : k ∈ Z} = H + 1 is
the set of all odd integers. Furthermore, m+H = 1+H for any odd integer
m, and m+H = 0 +H = H for any even integer m.

3. Let H = nZ = {nk : k ∈ Z} be the subgroup of multiples of n in the
additive group (Z,+). Then a+H = a+nZ = a+{a+nk : k ∈ Z} is the set
of all integers which are congruent to a modulo n. Note that a+H = b+H
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if and only if a ≡ b (mod n).

4. Let H = {[0], [2], [4]} in the additive group G = Z6. It is easy to
check that H is a subgroup of G. Then H = [0] +H = [2] +H = [4] +H.
Also, [1] +H = [3] +H = [5] +H = {[1], [3], [5]}.

5. Consider G = Z×
9 = {[1], [2], [4], [5], [7], [8]}, the multiplicative group

of units in the ring Z9. Let H = {[1], [8]} in Then H is a subgroup of G, and
H = [1]H = [8]H, [2]H = [7[H] = {[2], [7]}, and [4]H = [5]H = {[4], [5]}.
These are all the left cosets.

It is annoying to always have to distinguish between the multiplicative
and additive notation, so from now on we adopt the convention that all
groups will be multiplicative groups, unless stated otherwise. We leave it to
reader to make the necessary adjustments in notation for additive groups.

20.3 Definition (equivalence relations induced by a subgroup). Let H be
a subgroup of a given group G. Define a relation ∼L on G by: a ∼L b
whenever a−1b ∈ H. Define another relation ∼R on G by: a ∼R b whenever
ba−1 ∈ H. The relations ∼L,∼R are called left and right equivalence.

Note that the relations ∼L and ∼R depend on both the group G and the
chosen subgroup H.

20.4 Lemma. Both relations ∼L and ∼R are equivalence relations on G.
The equivalence classes for ∼L are the left cosets of H and the equivalence
classes for ∼R are the right cosets of H.

Proof. The proof that ∼L and ∼R are equivalence relations is an easy exer-
cise.

We prove the claim about left cosets. Let a, b ∈ G. We have a ∼L b if and
only if a−1b ∈ H if and only if b ∈ aH. Thus [a] = {b ∈ G : a ∼L b} = aH.
This proves that the equivalence class of a is equal to the left coset aH. The
proof of the claim about right cosets is similar.

In general cosets (left or right) are just subsets of the group G, and are
not necessarily subgroups. From now on we choose to work only with left
cosets for the sake of having a definite choice, but it should be understood
that everything we prove about left cosets applies equally well to right cosets.

20.5 Lemma (properties of left cosets). Let G be a group andH a subgroup
of G. Let a, b ∈ G. Then:

(a) a ∈ aH.
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(b) aH = H if and only if a ∈ H.

(c) aH = bH if and only if a ∼L b.

(d) aH = bH if and only if b = ax for some x ∈ H.

(e) Any pair of left cosets of H are either disjoint or coincide.

Proof. Exercise.

20.6 Definition. Let G be a group and H any subgroup of G. We write
G/H = {aH | a ∈ G} for the quotient set G/∼L of all left cosets of H. This
is called the quotient of G by H. We read the notation G/H as “G mod
H.”

By definition, G/H is a set of sets. The elements of G/H are the left
cosets of H, which by definition are certain subsets of G. Since ∼L is an
equivalence relation on the set G, it follows from the fundamental theorem
of equivalence relations that G can be expressed as the disjoint union of its
distinct left cosets. Those distinct left cosets are the elements of the quotient
set G/H.

20.7 Definition. The number of distinct elements of the set G/H (i.e., its
cardinality as a set), which is the same as the number of distinct left cosets,
is denoted by either |G/H| or [G : H], and is called the index of H in G. It
can be infinite, but it must be a finite number if G is a finite group.

Note that as a varies over G, there will in general be a lot of repetition in
the left cosets aH. When computing the index, you count just the distinct
cosets.

20.8 Examples. 1. Let G = Sn and let H = An. Then there are just two
left cosets: G/H = Sn/An = {An, αAn}, where α is any odd permutation.
This is just the splitting of all permutations into the even ones (An) and the
odd ones (αAn). So [Sn : An] = 2.

2. Take G = Z (under addition) and H = nZ = {nk : k ∈ Z}. The left
cosets have the form a+H = a+ nZ = {a+ nk : k ∈ Z} for various a ∈ Z.
Moreover, a+H = b+H if and only if −a+ b ∈ H, i.e., if and only if a ≡ b
(mod n). The distinct cosets are the a+H where 0 ≤ a ≤ n− 1. Note that
a+ nZ = [a], the congruence class determined by a. So the set G/H of left
cosets is

G/H = Z/nZ = {nZ, 1 + nZ, . . . , n− 1 + nZ} = {[0], [1], . . . , [n− 1]} = Zn.
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So the index is [Z : nZ] = n. Note that we have reconstructed Zn in terms of
cosets. To say it another way, the coset construction is a vast generalization
of the construction of Zn given previously.

3. Let G = O(n) for n ≥ 2 and let H = SO(n). Recall that the
determinant of any orthogonal matrix is ±1. By definition, elements of
SO(n) are proper orthogonal matrices (of determinant 1). So we have
G/H = O(n)/SO(n) = {SO(n), A ·SO(n)}, where A is any improper orthog-
onal matrix. This reflects the fact that the improper orthogonal matrices
are those of determinant −1. So the index is [O(n) : SO(n)] = 2.

4. Consider G = Z×
9 = {[1], [2], [4], [5], [7], [8]}, the multiplicative group

of units in the ring Z9. Then H = {[1], [8]} is a subgroup of G. The left
cosets of H in G are H = [1]H, [2]H = {[2], [7]}, and [4]H = {[4], [5]}. So
the index is [G : H] = 3. Notice that in this case |G|/|H| = 6/2 = 3.

The next result is a fundamental result about finite groups, with numer-
ous applications. In particular, it is heavily used in the design of public-key
cryptosystems.

20.9 Theorem (Lagrange’s Theorem). Let G be a finite group and H a
subgroup of G. Then |G| = [G : H] · |H|. In words, the order of G is the
order of the subgroup H times its index in G.

Proof. Since G is a finite set the left cosets must be finite sets as well. More-
over, all the left cosets must have the same cardinality. This is because H
is in bijective correspondence with aH, for any a ∈ G. The correspondence
is given by the map x 7→ ax (x ∈ H). So all the left cosets have the same
cardinality as the subgroup H and therefore the same cardinality as one an-
other. (Note that H = 1H is also a left coset.) There are precisely [G : H]
distinct left cosets. And G is the disjoint union of the left cosets, since cosets
are equivalence classes. So if m = [G : H] then we have the disjoint union

G = a1H ∪ a2H ∪ · · · ∪ amH

where these are the distinct left cosets. Thus |G| = m|H|, as required.

If a is an element of a group G, recall that its order |a| is the least
positive integer k such that ak = 1. Infinite groups can have elements of
infinite order, but if G is a finite group then every element has finite order.
Lagrange’s theorem tells us for example that if G is finite then the order of
all its subgroups and all its elements must divide the group order |G|.

20.10 Corollary. Suppose G is a finite group.
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(a) If H is a subgroup of G then |H| must divide |G|.
(b) If a ∈ G then its order |a| must divide |G|.
(c) Any group of order p, where p is prime, must be cyclic.

(d) If H is a subgroup of G then [G : H] = |G|/|H|.

Proof. (a) and (d) are obvious consequences of Lagrange’s Theorem.

(b) Let H = ⟨a⟩. Then |H| = |a| (the cardinality of H is equal to the
order of a). The statement in part (b) now follows from part (a).

(c) Let G be a group of order p, where p is prime. Since p > 1 we
know that G must contain at least one element x which is different from the
identity. Then |x| must divide p by part (b). Moreover, |x| > 1 since the
only element of order 1 in G is the identity element. The only divisors of p
are p and 1, so it follows that |x| = p. Hence G = ⟨x⟩ and G is cyclic.

Lagrange’s theorem can also be applied to number theory, to give easy
proofs of both Euler’s theorem and Fermat’s little theorem. That both
of these famous number theoretic results follow so easily from Lagrange’s
theorem illustrates the power of the abstract approach.

Recall that Euler’s phi-function φ(n) is defined to be the number of
integers a such that 1 ≤ a ≤ n−1 and gcd(a, n) = 1. Thus the multiplicative
group Z×

n of units has order φ(n). Recall also that the ring Zn = {[a] : a ∈
Z} = {[0], [1], . . . , [n − 1]}, where [a] is the congruence class of a, given by
[a] = {b ∈ Z : a ≡ b (mod n)}.

20.11 Corollary. Let a be any integer.

(a) (Euler’s theorem) For any positive integer n such that a, n are rela-
tively prime, we have aφ(n) ≡ 1 (mod n).

(b) (Fermat’s little theorem) For any prime p such that p does not divide
a, we have ap−1 ≡ 1 (mod p).

Proof. (a) Let G = Z×
n be the multiplicative group of units in the finite ring

Zn. We have |G| = φ(n), by definition of φ(n). If a, n are relatively prime
then gcd(a, n) = 1 and thus [a] ∈ Z×

n . By the first corollary to Lagrange’s
theorem, the order |[a]| must divide |G| = φ(n). Suppose |[a]| = k. Then
[a]k = [1] holds in G = Z×

n , where k divides φ(n). There is some m ∈ Z such
that φ(n) = km. Now the equality [a]k = [1] implies ([a]k)m = [1]m = [1].
In other words, [a]km = [a]φ(n) = [1] holds in G = Z×

n . This implies (by
definition of congruence class multiplication) that the equality [aφ(n)] = [1]
holds in G = Z×

n . To finish, recall that this equality in Zn is equivalent to
the desired congruence, so the proof is complete.
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(b) We can repeat the argument with p in place of n, noting that φ(p) =
p−1. Note that p does not divide a if and only if gcd(a, p) = 1. Alternatively,
we can just note that the result in (b) is just a special case of that in (a).

20.12 Definition. Let G be a group and H a subgroup of G. Any set S of
elements of G such that:

(a) G/H = {aH : a ∈ S},
(b) for all a, b ∈ S, a ̸= b implies aH ̸= bH

is called a set of left coset representatives of the quotient set G/H.

Picking a set of coset representatives is the same as choosing an element
from each distinct coset. If S is such a set, then we can write G as a disjoint
union: G =

⊔
a∈S aH. If the index [G : H] = n is finite, then we can write

this disjoint union as: G = a1H⊔a2H⊔· · ·⊔anH, where S = {a1, a2, . . . , an}.
One of the left cosets (say a1H) is always the same as the subgroup H

itself, and we may choose the identity element 1 as its coset representative. If
we have made that choice, then the above becomes G = H⊔a2H⊔· · ·⊔amH,
where S = {1, a2, . . . , an}.

In general coset representatives are far from unique. Thus, whenever
we define functions in terms of a set of coset representatives, then we must
pause to verify that our function is well-defined (independent of the choice
of coset representatives). We will see examples later.

Exercises

20.1. Prove that the relation ∼L defined by a subgroup H (see 20.1) is an equiv-
alence relation on the group G.

20.2. Prove Lemma 20.5.

20.3. Let G be the additive group Z2n. Let H = {[2k] ∈ Z2n : 0 ≤ k < n}. Show
that H < G, and compute the index [G : H].

20.4. Compute the index [G : H] for the following cases:

(a) H = {[0], [3]} in G = (Z6,+).

(b) H = {[0], [10]} in G = (Z90,+).

(c) H = {[1], [4], [13], [16]} in G = (Z×
17, ·).

(d) H = {[1], [7]} in G = (Z×
48, ·).

20.5. List the left cosets in G/H in part (a) and (c) of the preceding problem.

20.6. Let G = Cn = {1, x, x2, . . . , xn−1} be the abstract cyclic group of order n,
generated by an element x of order n. Suppose that k divides n and let
H = ⟨xk⟩ be the subgroup generated by xk. Describe the left cosets in G/H
and compute the index [G : H].
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20.7. Describe the distinct left cosets of the additive subgroup (Z,+) in the ad-
ditive group (R,+). In other words, describe the quotient set R/Z.

20.8. Describe the distinct left cosets of the additive subgroup (R,+) in the ad-
ditive group (C,+). In other words, describe the quotient set C/R. What
is [C : R]?

20.9. Let R+ be the set of positive real numbers. Describe the distinct left cosets
of the multiplicative subgroup (R+, ·) in the multiplicative group (R×, ·). In
other words, describe the quotient set R×/R+. What is [R× : R+]?

20.10. Describe the distinct left cosets of SL(2) in GL(2).

20.11. If p is a prime, describe the distinct left cosets of SL2(Fp) in GL2(Fp), and
compute the index [GL2(Fp) : SL2(Fp)].

20.12. Suppose that H is a subgroup of a group G. Show that if aH = Ha and
bH = Hb then abH = Hab.

20.13. Suppose that H is a subgroup of a group G. Show that if aH = Ha then
a−1H = Ha−1.

20.14. Explain why a group G of order 20 has no subgroups or elements of order
3, 7, or 9.

20.15. Show that if G is a group of order n then xn = 1 for every x ∈ G.

20.16. Prove that a group of prime order has no subgroups other than itself and
the trivial subgroup.

20.17. Prove that every element except the identity has order p in a group of prime
order p.

20.18. In the multiplicative group F×
11 we have [2]2 = [4], [2]4 = [4]2 = [5], and

[2]5 = [2]4 · [2] = [5] · [2] = [10]. Use one of the corollaries to Lagrange’s
theorem to explain why this immediately implies that [2] must have order
10 in the group.

20.19. Suppose that H, K are finite subgroups of a group G, and let m = |H|,
n = |K|.
(a) Show that the order |H ∩K| of H ∩K must be a common divisor of

m,n.

(b) Show that if m,n are relatively prime then H ∩K = {1} is the trivial
subgroup.

20.20. Suppose that G is a group of order pq where p, q are distinct primes. Show
that if G is not cyclic then every element in G except the identity must have
order p or q.
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21 Quotient groups

From now on we use multiplicative notation unless indicated otherwise. The
results apply equally well to additive groups, but the notation needs to be
translated accordingly.

If H is a subgroup of a group G, recall that G/H = {aH : a ∈ G} is the
set of all left cosets of H in G. The key question for this section is: when is
the set G/H of left cosets a group? Recall that we have previously defined
the product of two subsets S, T in a group by ST = {xy | x ∈ S, y ∈ T}. In
particular, this means that aH = {ax | x ∈ H}, Ha = {xa | x ∈ H}, and
(aH)(bH) = {axby | x, y ∈ H}. We want the product (aH)(bH) of two left
cosets to always equal another left coset.

21.1 Theorem. [coset multiplication] Suppose that H is a subgroup of a
group G. Then the following are equivalent:

(a) For any a, b ∈ G, there is some c ∈ G such that (aH)(bH) = cH.

(b) For any a, b ∈ G, (aH)(bH) = (ab)H.

(c) Hb = bH, for all b ∈ G.

Proof. (a) =⇒ (b): Since ab = a1b1 ∈ (aH)(bH), it follows from the given
equality (aH)(bH) = cH that ab ∈ cH. Hence (ab)H = cH.

(b) =⇒ (c): Let b ∈ G. Then (bH)(b−1H) = (bb−1)H = 1H = H;
i.e., bHb−1H = H. This implies that bHb−1 = bHb−11 ⊂ H, so bH ⊂ Hb.
Similarly, (b−1H)(bH) = (b−1b)H = H implies that b−1Hb ⊂ H, so Hb ⊂
bH. We have shown that bH ⊂ Hb and Hb ⊂ bH, so Hb = bH.

(c) =⇒ (a): Suppose that Hb = bH. Then by associativity we have
(aH)(bH) = a(Hb)H = a(bH)H = (ab)(HH) = (ab)H.

So multiplication of left cosets always produces another left coset pre-
cisely when condition (c) of the previous theorem holds. This leads to the
next definition.

21.2 Definition. Let G be a group and H a subgroup of G. We say that
H is a normal subgroup of G if Ha = aH for every a ∈ G. We will write
H ◁ G (or G ▷ H) to indicate that H is a normal subgroup of G.

The trivial subgroup {1} and the entire group G are always normal
subgroups of a group G. The definition says that H is a normal subgroup
if and only if every left coset is also a right coset. Thus, every subgroup of
an abelian group is normal.
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21.3 Theorem. Suppose that H is a subgroup of a group G. The following
are equivalent:

(a) H ◁ G.

(b) aHa−1 = H, for all a ∈ G.

(c) aHa−1 ⊂ H, for all a ∈ G.

Proof. (a) =⇒ (b): If H is normal in G then by definition aH = Ha for
all a ∈ G. Multiplying this equality by a−1 on the right gives the equality
aHa−1 = Haa−1. But Haa−1 = H1 = H.

(b) =⇒ (c): This is clear.

(c) =⇒ (a): Suppose aHa−1 ⊂ H, for all a ∈ G. Right multiply by a
to get aH ⊂ Ha. Replacing a by its inverse in the inclusion aHa−1 ⊂ H,
we get a−1Ha ⊂ H, so by left multiplication by a we get Ha ⊂ aH. We
have shown that both aH ⊂ Ha and Ha ⊂ aH, so aH = Ha. This proves
(a).

21.4 Remarks. 1. Note that if H is a subgroup of a group G then aHa−1

is also a subgroup of G, for any a ∈ G. This is called a conjugate subgroup
of H. Note also that |H| = |aHa−1|, since the map x 7→ axa−1 defines a bi-
jection from H onto aHa−1. In general, the conjugate subgroup aHa−1 can
be different from H. Then H ◁ G if and only if all the conjugate subgroups
of H are equal to H. (We can say that H is stable under conjugation when
H ◁ G.)

2. The relation ◁ is not transitive. That is, if H ◁ K and K ◁ G then it
is not always true that H ◁ G.

3. By replacing a by a−1 in parts (b), (c) of the preceding theorem, we
see that H ◁ G is also equivalent to:

(b’) a−1Ha = H, for all a ∈ G.

(c’) a−1Ha ⊂ H, for all a ∈ G.

Condition (c) in the theorem is a closure condition. It says that a subgroup
H is normal if and only if it is closed under conjugation. Elements of the
form axa−1 are called conjugates of x.

The following simple observation can often be used to find a normal
subgroup of a finite group whose order is an even number. It can also be
applied more generally to infinite groups.

21.5 Proposition. If H is a subgroup of a group G of index 2 then H must
be a normal subgroup of G. (In other words, [G : H] = 2 implies H ◁ G).
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Proof. Let a ∈ G. Either a ∈ H or a /∈ H, and we consider the two cases
separately. Case 1: If a ∈ H then aH = H and Ha = H by the fact
that H is closed under products, so aH = Ha. Case 2: If a /∈ H then
aH = G − H = {g ∈ G | g /∈ H} since there are just two left cosets, and
they are disjoint. Similarly, Ha = G−H for exactly the same reason. Thus
aH = Ha. Cases 1 and 2 taken together show that aH = Ha for all a ∈ G,
so H ◁ G.

21.6 Examples. 1. Since [Sn : An] = 2, it follows that the alternating
group An is a normal subgroup of the symmetric group Sn, for any n.

2. Since [O(2) : SO(2)] = 2, it follows that SO(2) ◁ O(2).

The following is a fundamental result in group theory. It turns out that
when N ◁ G, coset multiplication makes G/N into a group.

21.7 Theorem. [quotient group] Let N be a normal subgroup of a group G.
Then the coset multiplication rule (aN)(bN) = (ab)N (for any a, b ∈ G) is
a well-defined binary operation on the set G/N of left cosets. With respect
to this multiplication, G/N is a group, with identity element 1N = N . The
inverse of aN is a−1N .

Proof. To show that coset multiplication is well-defined we must show that
if aN = cN and bN = dN then (ab)N = (cd)N . Clearly (aN)(bN) =
(cN)(dN), and by Theorem 21.1, it follows that (ab)N = (cd)N . So coset
multiplication is well-defined.

Since (aNbN)cN = (ab)NcN = (ab)cN = a(bc)N = aN(bc)N =
aN(bNcN), the associative law (G1) holds. Since (1N)(aN) = aN =
(aN)(1N) it follows that (G2) holds with N = 1N serving as the iden-
tity. Finally, (aN)(a−1N) = 1N = (a−1N)(aN) shows that (G3) holds and
(aN)−1 = a−1N .

21.8 Definition. When N ◁ G, the group G/N is called the quotient group
of G by N . Quotient groups are also called factor groups.

21.9 Remark. If G is a finite group then by Lagrange’s theorem |G/N | =
|G|/|N | (the order of the quotient group G/N equals the cardinality of G
divided by the cardinality of N). Of course, by the definition of the index
[G : N ] we also have |G/N | = [G : N ].
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Exercises

21.1. Show that the trivial subgroup is always a normal subgroup of any group
G. Also, show that G ◁ G.

21.2. Show that every subgroup of a group G is normal if:

(a) G is abelian.

(b) G is cyclic.

21.3. Prove that the center Z(G) of a group G is a normal subgroup of G.

21.4. Show that if H is a subgroup of order n in a group G and H is the only
subgroup of order n, then H ◁ G.

21.5. Show that a subgroup H of a group G is normal if and only if it satisfies
the condition: ab ∈ H ⇐⇒ ba ∈ H, for all a, b ∈ G.

21.6. Prove that the intersection of any number of normal subgroups of a group
G is a normal subgroup of G.

21.7. Let D4 be the symmetry group of the square, and let r be the basic rotation.
Is the subgroup H = {1, r2} a normal subgroup of D4? Prove your answer.

21.8. Let Dn be the dihedral group on n vertices and letR be its rotation subgroup.
Prove that R ◁ Dn.

21.9. Let Dn be the dihedral group on n vertices and let d ∈ Dn be a reflection.
Then H = ⟨d⟩ = {1, d} is a cyclic subgroup of Dn. Find necessary and
sufficient conditions for this subgroup to be normal in Dn, and prove your
answer.

21.10. Prove that An is a subgroup of Sn of index 2 by first proving that there is
a bijection from An onto αAn, where α is any odd permutation.

21.11. Find all normal subgroups of the quaternion group Q. Justify your answer.

21.12. Show that ifH is a subgroup of index 2 in a group G then G/H is isomorphic
to the additive group (Z2,+).

21.13. Show that SO(n)◁O(n) and identify a group that is isomorphic to O(n)/SO(n).

21.14. Show that SL(n)◁ GL(n) and GL(n)/SL(n) is isomorphic to the multiplica-
tive group R× of the field of real numbers.

21.15. Show that the set G of all real 2 × 2 matrices of the form

(
a b
0 c

)
is a

subgroup of GL(2). Let N be the set of all matrices of the form

(
1 b
0 1

)
.

Prove that N ◁ G. (Note that you need to show it is a subgroup as well as
prove that it is normal.)

21.16. Show that nZ = {nk | k ∈ Z} is a normal subgroup of the additive group Z
of integers, and that Z/nZ ∼= Zn.

21.17. Prove that if H,K are subgroups of G and one of them is normal in G, then
their product HK is a normal subgroup of G.

21.18. Show that ifH,K are subgroups of a groupG such thatK◁G thenH∩K◁H.
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21.19. Give an example to show that there are groups K < H < G such that K◁ H
and H ◁ G but K is not a normal subgroup of G. In other words, normality
is not transitive.

21.20. Is it possible to find a group G in which every subgroup is normal but G is
not abelian? If so, exhibit one, otherwise prove that such a group is abelian.
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22 Homomorphisms

This is a central concept in group theory that ties everything together. To
define it, we momentarily revert to generic notation.

22.1 Definition. Suppose that (G, ∗) and (H,#) are groups. A homomor-
phism of groups is a function f : G → H such that f(a ∗ b) = f(a)#f(b) for
all a, b ∈ G.

In particular, group isomorphisms are bijections with this property, so
every isomorphism is a homomorphism. But not conversely, because we do
not require that a homomorphism be a bijection.

22.2 Remark. If G and H are additive groups then f : G → H is a
homomorphism if and only if f(a + b) = f(a) + f(b), for all a, b ∈ G. If G
is additive and H is multiplicative then f : G → H is a homomorphism if
and only if f(a+ b) = f(a) · f(b), for all a, b ∈ G. If G is multiplicative and
H is additive then f : G → H is a homomorphism if and only if f(a · b) =
f(a) + f(b), for all a, b ∈ G. Finally, if both G and H are multiplicative
then f : G → H is a homomorphism if and only if f(a · b) = f(a) · f(b), for
all a, b ∈ G.

The first two parts of the next result states that a group homomorphism
must match up the identity and inverses in the two groups.

22.3 Theorem (properties of homomorphisms). Let f : G → H be a
homomorphism from a group (G, ∗) to a group (H,#). Then:

(a) f(eG) = eH ; i.e., f maps the identity of G onto the identity of H.

(b) The inverse of f(a) in H is the image of the inverse of a; i.e., if a′ is
the inverse of a in G then the inverse of f(a) in H is f(a)′ = f(a′).

(c) If f is a bijection, then f−1 : H → G must also be a homomorphism.

Proof. (a) Let y = f(eG) be the image of the identity of G. We must show
that y = eH , the identity of H. We have eH#f(x) = f(x) = f(eG ∗ x) =
f(eG)#f(x) = y#f(x). Thus eH#f(x) = y#f(x) and by right cancellation
we conclude that eH = y.

(b) Let y = f(b) where b is the inverse of a in G. Let z be the inverse
of f(a) in H. We must show that y = z. But f(a)#z = eH by definition of
inverse, and f(a)#y = f(a)#f(b) = f(a ∗ b) = f(eG) = eH , by part (a) and
the defining property of homomorphism. Thus f(a)#z = f(a)#y. By left
cancellation, this implies z = y.
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(c) If f matches up products and is a bijective correspondence, then its
inverse must match up products as well.

22.4 Remark. By part (a) of the preceding result, a homomorphism be-
tween additive groups must take 0 to 0, while a homomorphism between
multiplicative groups must take 1 to 1. A homomorphism from an additive
group to a multiplicative group must send 0 to 1, while a homomorphism
from an multiplicative group to an additive group must send 1 to 0,

Similarly for inverses in part (b). If f is a homomorphism between addi-
tive groups then −f(a) = f(−a), whereas if f is a homomorphism between
multiplicative groups then f(a)−1 = f(a−1). If f is a homomorphism from
an additive group to a multiplicative group then f(a)−1 = f(−a). Finally,
if f is a homomorphism from an multiplicative group to an additive group
then −f(a) = f(a−1).

It quickly becomes tiresome to distinguish between these possibilities.
From now on in the general theory, we will always use multiplicative notation
for both groups connected by a homomorphism, unless stated otherwise,
trusting the reader to make the necessary adjustments in other situations.

22.5 Definition. Let f : G → G′ be a group homomorphism from a group
G into a group G′. The kernel of f (written as ker f) is the subset of the
domain group G defined by ker f = {x ∈ G | f(x) = 1}.

Note that if G′ is an additive group, then ker f = {x ∈ G | f(x) = 0}.

22.6 Theorem (kernels are normal subgroups). The kernel of a homomor-
phism f : G → G′ of groups is a normal subgroup of the domain group
G.

The proof is an easy exercise.

22.7 Definition. Let G be a group and K a normal subgroup of G. Then
we have a homomorphism π : G → G/K defined by the rule π(a) = aK. It
is surjective. This particular homomorphism is called the canonical homo-
morphism or the canonical quotient map.

One can check (exercise) that the canonical homomorphism actually is
a homomorphism.

22.8 Theorem (first isomorphism theorem). Let G, G′ be groups and f :
G → G′ a group homomorphism. Set K = ker f and I = im f = f(G).
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Then f = ι ◦ f ◦ π, where ι : I → G′ is the inclusion map (coming from
the inclusion I ⊂ G′), π : G → G/K is the canonical homomorphism, and
f : G/K → I is an isomorphism, given by the rule f(aK) = f(a) for a ∈ G.
(In particular, G/K ∼= I.)

This theorem is also known as the fundamental theorem of homomor-
phisms. The factorization of the homomorphism f in the theorem may be
pictured by the following commutative diagram:

G
f //

π
��

G′

G/K
f // I

ι

OO

and the diagram is a very convenient way to remember the theorem. In
the diagram, there are two routes from G to G′. The theorem says these
two routes are the same: f = ι ◦ f ◦ π, and that the induced map f is an
isomorphism. (The latter fact is most often used in practice.)

Proof. The map ι : I → G′ is defined by the rule ι(y) = y for any y ∈ I.
The map π has previously been defined, and the definition of f is given in
the statement of the theorem. We must show that f = ι ◦ f ◦ π; in other
words, we must show that

f(x) = (ι ◦ f ◦ π)(x) = ι(f(π(x)))

for all x in G. Well, let x ∈ G. Then by the definitions of the maps we have
ι(f(π(x))) = ι(f(xK)) = ι(f(x)) = f(x). This proves the desired equality.

Let us check that the map f is a well-defined function; i.e., the value
f(aK) does not depend on the choice of coset representative. Suppose that
aK = bK for two elements a, b of G. We have to show that f(aK) = f(bK).
Well, by definition of the map f we have f(aK) = f(a) and f(bK) = f(b), so
we have to prove that f(a) = f(b). This follows from the equality aK = bK,
which implies that a−1b ∈ K, so there exists some x ∈ K such that a−1b = x,
so b = ax, so f(b) = f(ax) = f(a)f(x) = f(a)1 = f(a) as desired. This
proves that the map f is well-defined.

It remains to prove that the induced map f : G/K → I is an isomor-
phism. First, note that f is a homomorphism, since f(aK ·bK) = f(abK) =
f(ab) = f(a)f(b) = f(aK)f(bK), for any a, b ∈ G. It is injective since if
aK lies in the kernel of f , then f(aK) = f(a) is the identity element of G′,
so a ∈ K, so aK = K. This proves that the kernel of f is just the identity
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coset K of G/K, so f is injective as claimed. Finally, f is surjective onto I
by its definition. We have shown that f is a bijective homomorphism. Thus
it is an isomorphism. The proof is complete.

22.9 Examples. 1. For n ≥ 2, there is a homomorphism from the sym-
metric group Sn to the multiplicative group {1,−1} = Z× given by the rule:
α 7→ sgn(α). This homomorphism is surjective (i.e., the image is {1,−1}).
Its kernel is the set An of even permutations, since we know that sgn(α) = 1
if and only if α is even. By the theorem, it follows that Sn/An

∼= Z× is cyclic
of order 2.

2. Let n be a positive integer. Recall that we write Zn for the additive
group of integer residues modulo n. Consider the homomorphism (of addi-
tive groups) Z → Zn given by a → a, where a is the residue of a mod n.
This is a homomorphism since a+ c = a + c for all a, c ∈ Z. The kernel
of this homomorphism is the subgroup nZ of all multiples of n. It is clear
that the homomorphism is surjective onto Zn. Thus we have a group iso-
morphism Z/(nZ) ∼= Zn. This shows that the additive group Zn is, in fact,
a quotient group. (Note: To be sure, Z and Zn are actually rings when we
consider the two operations of addition and multiplication together, but in
the isomorphism above we are for the moment ignoring the multiplication
and just paying attention to the additive group structure.)

The next result states that every normal subgroup arises as the kernel
of some homomorphism.

22.10 Theorem (normal subgroups are kernels). If K is a given normal
subgroup of a group G, then there exists a homomorphism f : G → G′ (for
some group G′) such that K = ker f .

Proof. We set G′ = G/K and we let f be the canonical homomorphism.
Then its kernel is K, so the proof is complete.

The following two results are known as the second and third isomorphism
theorems for groups. Along with the first isomorphism theorem (Theorem
22.8) these results describe fundamental properties of quotient groups and
homomorphisms.

22.11 Theorem (second isomorphism theorem). If K◁ G and H < G then:

(a) H ∩K ◁ H.

(b) The product set HK = {xy : x ∈ H, y ∈ K} is a subgroup of G.

(c) H/(H ∩K) ∼= HK/K.

116



This follows from the first isomorphism theorem. The proof is an exer-
cise.

22.12 Theorem (third isomorphism theorem). IfH◁ G, K◁G, andH ⊂ K
then:

(a) (K/H) ◁ (G/H).

(b) (G/H)/(K/H) ∼= G/K.

This also follows from the first isomorphism theorem. The proof is an
exercise.

We finish our discussion of quotients with an easy application of the first
isomorphism theorem, to classify all cyclic groups.

22.13 Theorem (classification of cyclic groups). Let G be a cyclic group.
Then either G is isomorphic to the additive group Z of integers or G is
isomorphic to the additive group Zn of residues modulo n, for some n.

Proof. Let G = ⟨a⟩. The integers Z form a group under addition, and
the (surjective) map f : Z → G defined by the rule k → ak is a group
homomorphism.

If the order of a is infinite, then the kernel of f is the trivial subgroup
{0}, and so f is injective and hence an isomorphism. So Z ∼= G in case |a|
is infinite.

If the order of a is finite, say the order is n, then the kernel of f is the set
nZ of all multiples of n, and by the first isomorphism theorem, Z/nZ ∼= G.
But Z/nZ is Zn, by definition. So in this case we have Zn

∼= G.

Exercises

22.1. Prove that kernels are normal subgroups (see 22.6).

22.2. Prove that an isomorphism is a bijective homomorphism.

22.3. (Injectivity test for homomorphisms) Prove that if f : G → H is a group
homomorphism with kernel K then f is injective if and only if K is the
trivial subgroup.

22.4. Prove that the canonical homomorphism (see 22.7) is really a homomor-
phism; i.e., show that π(ab) = π(a)π(b) for all a, b in G.

22.5. Prove that if f : G → H and g : H → K are group homomorphisms then
their composite g ◦ f is a group homomorphism.

22.6. (Homomorphic images of subgroups are subgroups) Show that if f : G → G′

is a group homomorphism and H < G then f(H) < G′, where f(H) =
{f(x) | x ∈ H}.
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22.7. (Homomorphic preimages of subgroups are subgroups) Show that if f : G →
G′ is a group homomorphism and H ′ < G′ then f−1(H ′) < G, where
f−1(H ′) = {x ∈ G | f(x) ∈ H ′}. Furthermore, show that ker f < f−1(H ′).

22.8. Define a map f : R → C× by f(x) = e2πix for any x ∈ R. (Here R is the
additive group of real numbers.)

(a) Prove that f is a group homomorphism and compute its kernel.

(b) Use the first isomorphism theorem to show that the quotient group
R/Z is isomorphic to the circle group {e2πix | x ∈ R}.

22.9. Prove that R/Z in the previous problem is isomorphic to the group SO(2)
of rotations of the plane.

22.10. Let G be an abelian group. Let H = {x2 | x ∈ G} be the set of squares in
G, and let K = {x ∈ G | x2 = 1} be the set of elements of order one or two.
Prove that:

(a) The function f : G → G defined by f(x) = x2 is a homomorphism.

(b) Identify the kernel of f and justify your answer.

(c) Show that G/K ∼= H.

22.11. Prove that SL(n) ◁ GL(n) and GL(n)/SL(n) ∼= R× by applying the first
isomorphism theorem.

22.12. Prove that SO(n) ◁ O(n) and O(n)/SO(n) ∼= Z× by applying the first iso-
morphism theorem.

22.13. Prove the second isomorphism theorem: IfK◁G andH < G thenH∩K◁H,
HK is a subgroup of G, and H/(H ∩K) ∼= HK/K. (See 22.11.)

22.14. Prove the third isomorphism theorem: If H ◁ G, K ◁ G, and H ⊂ K then
(K/H) ◁ (G/H) and (G/H)/(K/H) ∼= G/K. (See 22.12.)

22.15. If G is a group, show that the function f : G → G defined by f(x) = x2 is
a homomorphism if and only if G is abelian.

22.16. Use the third isomorphism theorem (see 22.12) to prove that if m = nk
for positive integers m,n, k then the additive group Zm has a subgroup
Z′
n isomorphic to Zn, and Zm/Z′

n
∼= Zk. [Hint: Start by setting G = Z,

H = mZ, and K = kZ.]
22.17. Show directly that any quotient group of a cyclic group is cyclic. Why does

this give a different proof of the result in the preceding problem?
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Chapter 7

Simple Groups and Direct
Products

23 Simple groups

The notion of a simple group was introduced by Galois. Around 1981, a
complete classification of the finite simple groups was obtained. This was the
culmination of many decades of effort of many researchers. The classification
theorem is regarded as one of the most important achievements of twentieth
century mathematics; see Appendix C for a brief history of its proof.

Some of the theorems in this section will be stated without proof. They
are given here for the sake of general knowledge of the subject, and will not
be used in the sequel.

23.1 Definition (Galois). A group G is called simple if it has no normal
subgroups other than {1} and G itself.

This means that G is simple if and only if the only quotient groups of G
are isomorphic to {1} and G.

Notice that the definition of a simple group is analogous to the definition
of a prime number in the integers. A prime integer is one which has no
factors other than the trivial ones, and a simple group is one which has no
factor groups other than the trivial ones.

23.2 Examples. 1. Every cyclic group of prime order is a simple group.
This is an easy consequence of Lagrange’s theorem.

2. Every alternating group An is simple, except for A4. This was dis-
covered by Galois, and the proof is not easy.
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The following result, known as the correspondence theorem, is another
basic theorem about homomorphisms and quotient groups.

23.3 Theorem (correspondence theorem). Let K be any normal subgroup
of a given group G and let π : G → G/K be the canonical homomorphism.
Then the mapping H 7→ π(H) = H/K defines a bijective correspondence
between the subgroups of G containing K and the subgroups of G/K. Fur-
thermore, in this correspondence H ◁ G if and only if H/K ◁ G/K.

Proof. This is an exercise in using the isomorphism theorems.

As an application of the correspondence theorem, we describe a way of
“factoring” a given finite group into a list of simple groups, analogous to the
way in which we factor a given positive integer into its prime factors.

Suppose that G is a given finite group. Let N1 be a proper normal
subgroup of G which is as large as possible. Then by the correspondence
theorem G/N1 has no nontrivial proper normal subgroup, so G/N1 is simple.
Next, choose a proper normal subgroup N2 of N1 that is as large as possible.
Then as before, the quotient N1/N2 must be simple. Continue in this way as
long as possible. Eventually you will arrive at a subgroup Nk−1 in which the
largest proper normal subgroup is the trivial subgroup {1}, and the process
terminates with Nk = {1}. We know that the process must terminate since
G is finite.

A series of normal subgroups such as the one we just described is called
a composition series of G. It describes a way in which G can be factored
as a series of simple group quotients. This explains the interest in simple
groups: in some sense every finite group can be described by a series of
simple groups.

These observations lead to the following definition.

23.4 Definition. Let G be a group. A composition series of G is a sequence
of normal subgroups

G = N0 ▷ N1 ▷ N2 ▷ · · · ▷ Nk−1 ▷ Nk = {1}

where Nj/Nj+1 is a simple group for each j. The various simple quotient
groups Nj/Nj+1 are called the composition factors of G.

The following important theorem says that the set of composition factors
of a finite group are uniquely determined by the group, apart from the order
in which they are produced. This is a fundamental property of every finite
group.
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23.5 Theorem (Jordan–Hölder). Any finite group has a composition se-
ries. Moreover, its composition factors are unique, except for order and
isomorphism. In other words, if

G = N0 ▷ N1 ▷ N2 ▷ · · · ▷ Nm−1 ▷ Nm = {1}

and
G = K0 ▷ K1 ▷ K2 ▷ · · · ▷ Kn−1 ▷ Kn = {1}

are any two composition series for G, then m = n and there is a permutation
α ∈ Sn such that Ni/Ni+1

∼= Kα(i)/Kα(i+1) for each i.

Proof. The existence of the composition series was proved in the remarks
preceding the theorem. The proof of the uniqueness statement is omitted,
but can be easily found by consulting the literature.

Recall that the fundamental theorem of arithmetic says that every pos-
itive integer can be written as a product of primes, and the prime factors
are unique apart from their order. The Jordan–Hölder theorem is some-
what analogous, it says that every finite group has a composition series in
which the composition factors are simple groups, and the composition fac-
tors are unique apart from their order. In this analogy, the simple groups
are analogous to prime numbers.

The following definition is based on the fundamental work of Galois on
solutions of polynomial equations.

23.6 Definition. A group G is called solvable if it has a series of normal
subgroups

G = N0 ▷ N1 ▷ N2 ▷ · · · ▷ Nk−1 ▷ Nk = {1}

such that the quotient group Nj/Nj+1 is cyclic of prime order, for each j.

In other words, the composition factors of a solvable group are all cyclic
groups of prime order. Later we will prove that any finite abelian group is
solvable.

The reason for the terminology ‘solvable’ is explained by the following
result, known as the fundamental theorem of Galois theory. This is the
famous result that connects group theory to the ancient problem of solving
polynomial equations. The proof is beyond the scope of this course, and will
not be discussed here.
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23.7 Theorem (Galois). Let p(x) be an irreducible polynomial with ratio-
nal coefficients, and let G = Gal(p) be its Galois group. Then the complex
roots of p(x) are expressible in terms of radicals if and only if G is a solvable
group.

The following famous result is usually known as the odd order theorem.
It was first proved in 1963 by Walter Feit and John Thompson.

23.8 Theorem (the Feit–Thompson odd order theorem). Every finite group
of odd order is solvable.

This was a landmark result in group theory. The published proof of this
theorem appeared in Pacific Journal of Mathematics, vol. 13, pp. 775–1029.
Yes, that is correct: the proof occupies 255 printed pages! Perhaps we can
be forgiven for not giving the proof here.

Exercises

23.1. Use Lagrange’s theorem to prove that every cyclic group of prime order is
a simple group.

23.2. Compute the composition factors of S2 and S3. Are they solvable groups?

23.3. Show that A3 is simple.

23.4. Compute the composition factors of S4. Is S4 a solvable group? Justify your
answer.

23.5. Assuming that A5 is a simple group (this was proved by Galois) show that
S5 is not a solvable group.

23.6. Let p be a prime. Show that the dihedral group Dp of order 2p is a solvable
group, by computing its composition factors.

23.7. Find a composition series of D4, and compute its composition factors. Is D4

a solvable group?

23.8. Galois proved that the alternating group A5 is simple. Galois also showed
that the symmetry group of the general quintic equation (degree 5 polyno-
mial with arbitrary variable coefficients) is S5. Assuming these facts, prove
that the roots of a general quintic cannot be expressed in terms of radicals.

23.9. Prove the correspondence theorem (Theorem 23.3).

23.10. Show that if G is a group of prime power order pr for a prime p and r ≥ 1
then the composition factors of G are all isomorphic to Zp.
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B Appendix: Brief history of simple groups

The notion of a simple group was introduced by Galois in 1831. He knew
that the cyclic groups of prime order, and the alternating groups An for
n ≥ 5, were examples of simple groups. Jordan found some more simple
groups (they were matrix groups) in 1870, and L.E. Dickson in Chicago
found some more in the years between 1892 and 1905. Around 1905 Miller
and Cole showed that five groups described by E. Mathieu in 1861 were in
fact simple groups; these five, which did not seem to fit in with other known
examples, came to be known as sporadic groups.

No other examples of finite simple groups were discovered until the 1950s.
Then a French mathematician, Claude Chevalley, had an important insight
which led him to construct infinitely many new examples of finite simple
groups, using matrix groups as a tool in the construction. Other examples
quickly followed in the 1960s and 1970s, including new sporadic groups.
During those decades, research into finite group theory was intense, and the
focus was on simple groups. Most of the new finite simple groups discovered
during those years are linear groups or variations thereof.

The study of simple groups has led to a truly colossal theorem: the clas-
sification of all finite simple groups. This was supposedly achieved around
1981.1

B.1 Theorem (the classification theorem). Every finite simple group is
isomorphic to one of the following groups:

(a) A cyclic group of prime order.

(b) An alternating group of degree at least 5.

(c) A simple group of Lie type, including both

� the classical Lie groups, namely the simple groups related to the
projective special linear, unitary, symplectic, or orthogonal trans-
formations over a finite field;

� the exceptional and twisted groups of Lie type (including the Tits
group).

(d) One of the 26 sporadic simple groups.

The proof of this theorem took decades of effort on the part of hundreds

1Actually, although the theorem was announced in 1981 as finished, there was a gap in
the proof, in that a classification of the so-called quasi-thin groups was never completely
written down. This gap was only very recently filled in, by the 2004 publication of a
two-volume work of 1,221 pages by Aschbacher and Smith. (Stephen Smith is a professor
at the University of Illinois at Chicago.)
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of mathematicians. According to the preface of a book2 on the classification:

The existing proof of the classification of the finite simple groups
runs to somewhere between 10,000 and 15,000 journal pages,
spread across some 500 separate articles by more than 100 math-
ematicians, almost all written between 1950 and the early 1980s.

The proof followed a plan that was outlined by Daniel Gorenstein at a group
theory conference at the University of Chicago in 1972. At the time, the
experts were skeptical. Some experts were on record predicting that a com-
plete classification of the finite simple groups would take hundreds of years
to achieve. But a University of Chicago Ph.D. student in the audience,
Michael Aschbacher (now a professor at Cal Tech), went to work on Goren-
stein’s plan, producing a series of breakthroughs that eventually, with a lot
of help from others, led to the classification, following rather precisely the
plan outlined by Gorenstein. This took only nine years, and the experts
were astonished!

B.2 Examples (and remarks). 1. Every cyclic group of prime order is
simple. This is an easy consequence of Lagrange’s theorem.

2. The alternating groups An for n ≥ 5 are simple. This fact was first
proved by Galois, and the fact that A5 is simple is the reason why the quintic
equation is unsolvable in terms of radicals.

3. In the classification of finite simple groups, most of the simple groups
are linear groups (i.e., groups of matrices) over finite fields.

4. There are 26 sporadic simple groups. The largest of these is known
as the Monster ; it was discovered around 1980 by Robert Greiss at the
University of Michigan. It has about 8 × 1053 elements — more than the
number of atoms in the universe! The Monster is a group of rotations in a
euclidean space of 196883 dimensions. In other words, we can represent its
elements by n× n matrices where n = 196883.

5. In 1998 at the International Congress of Mathematicians in Berlin,
a Fields Medal3 was awarded to Richard Borcherds for his work on settling
the so-calledMonstrous Moonshine Conjecture of Conway and Norton, which
gives a connection between the Monster group and a certain function which

2Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald, The classification of the finite
simple groups. Mathematical Surveys and Monographs, 40.1. American Mathematical
Society, Providence, RI, 1994.

3The Fields Medal has generally been regarded as the highest honor a mathematician
can achieve, since there is no Nobel prize for mathematics.
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appears in conformal field theory in physics. To accomplish this, Borcherds
invented a subject known as “vertex operator algebras” and in particular
defined a new Lie algebra known as the Monster Lie algebra. It turns out
that vertex operator algebras have applications to physics.

Currently there are two teams of mathematicians working on a revision
of the proof of the classification theorem. Their stated goal is to reduce the
length of the proof to between 3,000 and 4,000 pages.
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24 Direct products of groups

Recall the Cartesian product of two sets in set theory, which is used to
construct the euclidean plane R2 = R × R as the set of all ordered pairs
of real numbers. For any sets A, B we can similarly form the Cartesian
product set

A×B = {(x, y) | x ∈ A, y ∈ B}.

Given two groups one can make their Cartesian product into a group in a
very natural way. This makes it possible to construct many new examples
of groups by taking products of ones we already know.

As usual, we use multiplicative notation in this section, leaving it to the
reader to make the necessary notational adjustments in other cases.

24.1 Definition. The direct product of given groups G, H is the group
G×H = {(x, y) | x ∈ G, y ∈ H} of ordered pairs, with binary operation

(x, y) · (u, v) = (xu, yv), for all x, u ∈ G, y, v ∈ H.

The identity element of G × H is the pair (1G, 1H). The inverse of a pair
(x, y) is the pair (x−1, y−1); that is: (x, y)−1 = (x−1, y−1).

It must be checked that this actually works; that is, we must verify that
the above multiplication rule on G×H makes G×H a group. This is left
for you as an exercise.

If G, H have finite order then we have |G×H| = |G| · |H|; i.e., the order
of the direct product G×H is the product of the orders of G and H. If one
of the groups G,H is infinite then so is their direct product.

24.2 Examples. 1. The group Z2×Z2 is a group of order 4. It is not hard
to see that it is isomorphic with the Klein 4-group.

2. If m,n are relatively prime then Zm × Zn is isomorphic to Zmn. In
particular, if p, q are distinct primes then Zp × Zq

∼= Zpq.

Recall that if H, K are subsets of a group G then HK = {hk : h ∈
H, k ∈ K}.

24.3 Theorem (Internal direct products). Let G be a group and suppose
that H,K are normal subgroups of G. If HK = G and H ∩K = {1} then
G ∼= H ×K and every element of G is uniquely expressible as a product of
an element of H by an element of K.
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Proof. We define a map f from H ×K to G by the rule f((x, y)) = xy, for
any x ∈ H, y ∈ K. Since HK = G the map f is surjective.

Next we claim that elements of H must commute with elements of K.
For any x ∈ H, y ∈ K consider the product (xyx−1)y−1 = x(yx−1y−1).
Since K is normal, the left hand side is an element of K. Since H is normal,
the right hand side is an element ofH. Thus the product under consideration
lies in the intersection H ∩ K, so xyx−1y−1 = 1, so xy = yx. This proves
the claim.

We can now verify that f is actually a homomorphism: f( (x, y)(x′, y′) ) =
f((xx′, yy′)) = xx′yy′ = xyx′y′ = f((x, y))f((x′, y′)). Finally, we check that
f is injective. Let (x, y) (x ∈ H, y ∈ K) be an element of the kernel. Then
xy = 1, so y = x−1 must belong to H, thus to H ∩K, and thus y = 1. Thus
x = 1 as well, and (x, y) = (1, 1). This shows that the kernel of f must be
the trivial subgroup of H ×K, so f is injective, as desired. We have shown
that f is a bijective homomorphism. Thus f is an isomorphism from H×K
to G, so H ×K ∼= G.

It remains to show that every element g ∈ G is uniquely expressible in
the form hk, for some h ∈ H, k ∈ K. That g has such an expression is
clear from the hypothesis G = HK, so we only need to prove uniqueness.
Suppose that g = h1k1 = h2k2 where h1, h2 ∈ H, k1, k2 ∈ K. Then by left
multiplying by h−1

2 and right multiplying by k−1
1 we obtain h−1

2 h1 = k2k
−1
1 .

In this equation, the left hand side is an element of H while the right hand
side is an element of K. So both sides of the equation belong to H ∩K. But
H ∩K = {1}, so h−1

2 h1 = 1 and k2k
−1
1 = 1; i.e., h1 = h2 and k1 = k2. This

proves the uniqueness statement.

The point of the previous theorem is to “factor” the group G as a di-
rect product of two of its subgroups. This is a group-theoretic analogue of
factoring integers.

24.4 Definition. Whenever a group G is isomorphic to the direct product
of normal subgroups H,K then we say it is the internal direct product of
those subgroups, and we write G = H ×K.

According to the theorem, we can factor G as the internal direct product
of normal subgroups H,K if and only if HK = G and H ∩K = {1}.

24.5 Examples. 1. If m,n are relatively prime then Zmn has a unique
subgroup H of order m, and a unique subgroup K of order n. In fact,
H = ⟨[n]⟩ and K = ⟨[m]⟩ as you can easily check. Then H +K = Zn and
H ∩ K = {[0]}, so Zmn is the internal direct product of H,K. Of course
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H ∼= Zm and K ∼= Zn since all subgroups of a cyclic group are cyclic. Note
that we write H +K instead of HK here because the groups are additive
groups.

2. The group S3 has subgroups H = ⟨(1, 2)⟩, K = ⟨(1, 2, 3)⟩ of order
2 and 3, respectively. It is clear that HK = S3 and H ∩ K = {(1)}.
Furthermore, K is a normal subgroup of S3 since it is a subgroup of index
2. Alas, the subgroup H is not normal. So S3 is not equal to the direct
product of these two subgroups. (In fact, it is impossible to express S3 as
the internal direct product of any two of its subgroups.)

The discussion extends to products of more than two groups.

24.6 Definition. The direct product of given groups G1, G2, . . . , Gn is the
group G1×G2×· · ·×Gn = {(x1, x2, . . . , xn) | xk ∈ Gk for all k = 1, . . . , n},
with binary operation

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn).

The identity element is the tuple (1, . . . , 1). The inverse of (x1, . . . , xn) is
the tuple (x−1

1 , . . . , x−1
n ) of inverses; i.e. (x1, . . . , xn)

−1 = (x−1
1 , . . . , x−1

n ).

Again, it must be verified that this really is a group. The verification is
no more difficult than for the case of products of two groups, and thus left
to the reader.

If H1, H2, . . . ,Hn are subsets of a group G then we extend the product
notation in the obvious way: H1H2 · · ·Hn = {h1h2 · · ·hn : hk ∈ Hk, for all k =
1, 2, . . . , n}.

24.7 Theorem (Internal direct products). Let G be a group and suppose
that H1, H2, . . . ,Hn are normal subgroups of a group G. IfH1H2 · · ·Hn = G
and

Hk ∩ (H1 · · ·Hk−1Hk+1 · · ·Hn) = {1}, for all k = 1, . . . , n

then G ∼= H1×H2×· · ·×Hn and every element of G is uniquely expressible
as a product of the form h1h2 · · ·hn, where hk ∈ Hk for all k.

The proof is omitted.

24.8 Definition. Whenever normal subgroups H1, H2, . . . ,Hn of a group
G can be found such that G ∼= H1×H2×· · ·×Hn then we say that G is the
internal direct product of the subgroups, and write G = H1×H2×· · ·×Hn.
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For this to hold, it is necessary that the subgroups are normal subgroups
and that they satisfy the conditions of the theorem.

Since internal and external direct products are isomorphic, people usu-
ally do not bother to make a distinction between them.

For finite subgroups of a group, the following simple counting proposition
can be useful.

24.9 Proposition. Let H,K be finite subgroups of a group G such that
H ∩K = {1}. Then |HK| = |H| · |K|.

Proof. By definition, HK = {xy | x ∈ H, y ∈ K}. The number of elements
is |H| · |K| precisely when all the listed products are distinct, so that’s
what needs to be shown. So suppose that x1y1 = x2y2 where x1, x2 ∈ H,
y1, y2 ∈ K. Left multiply the equation x1y1 = x2y2 by x−1

1 and right
multiply by y−1

2 to get y1y
−1
2 = x−1

1 x2. Since H,K are subgroups of G, the
left hand side y1y

−1
2 ∈ K and the right hand side x−1

1 x2 ∈ H. Since they
are equal, both elements are in H ∩K. Since H ∩K = {1}, it follows that
y1y

−1
2 = 1 and x−1

1 x2 = 1; i.e., y1 = y2 and x1 = x2.

Exercises

24.1. Verify that if G,H are groups then G×H is a group.

24.2. If G,H are abelian groups, show that their direct product G×H is abelian.

24.3. Show that G× {1} ∼= G.

24.4. Is the dihedral group Dn ever isomorphic to Zn × Z2? Prove your answer.

24.5. Show that if m,n are relatively prime then Cmn
∼= Cm × Cn. (Here, Cn

means the cyclic group of order n.)

24.6. Show that if m,n are relatively prime then Zmn
∼= Zm × Zn.

24.7. Prove that G×H ∼= H ×G.

24.8. Prove that if G×H ∼= G×K then H ∼= K. (This can be called a cancellation
property for direct products.)

24.9. The symmetric group S3 has composition factors isomorphic to the cyclic
groups C2, C3 of order 2 and 3. Show that S3 ̸∼= C2 × C3. (This shows that
not all groups are isomorphic to the product of their composition factors.)

24.10. If |G| = mn where m,n are relatively prime and G has normal subgroups
H,K of order m,n respectively, then show that G = H ×K.

24.11. Show that if H,K are normal subgroups of a group G, HK = G, and every
g ∈ G is uniquely expressible in the form g = hk for some h ∈ H, k ∈ K
then H ∩K = {1} and hence G = H ×K.
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24.12. IfH1, H2, . . . ,Hn are normal subgroups of a group G, H1H2 · · ·Hn = G, and
every g ∈ G is uniquely expressible as a product of the form g = h1h2 · · ·hn,
where hk ∈ Hk for all k, then show that

Hk ∩ (H1 · · ·Hk−1Hk+1 · · ·Hn) = {1}, for all k = 1, . . . , n

and thus G = H1 ×H2 × · · · ×Hn.

24.13. Show that if G = H1×H2×· · ·×Hn is the internal direct product of normal
subgroups H1, H2, . . . ,Hn then for any i ̸= j we have:

(a) Hi ∩Hj = {1}.
(b) ab = ba for all a ∈ Hi, b ∈ Hj . [Hint: Argue that aba−1b−1 is in both

Hi and Hj .]

24.14. (a) Show that the map x 7→ (x, 1) is an injective homomorphism from G
into G×H.

(b) Show that the image of this homomorphism is a normal subgroup of
G×H isomorphic to G.

24.15. Show that the rule (x, y) 7→ x defines a surjective homomorphism p1 map-
ping G×H onto G. Similarly, the rule (x, y) 7→ y defines a surjective homo-
morphism p2 mapping G × H onto H. These maps are called projections.
Describe their kernels and images.

24.16. If G = H × K is the direct product of two normal subgroups H,K then
prove that G/H ∼= K and G/K ∼= H.

24.17. Let G be a group and consider the direct product G×G. Show that the set
S = {(x, x) | x ∈ G} is a subgroup of G×G. Then show it is isomorphic to
G. (It is known as the diagonal subgroup of G×G.)
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Chapter 8

Group Actions

25 Group actions

Group actions are useful for a variety of purposes. Not only do they give
us new information about groups themselves, but there are also important
applications to physics, chemistry, geometry and combinatorics.

25.1 Definition. Let G be a group and X a set. We say that G acts on the
set X (on the left) if there is a mapping G×X → X, written as (g, x) 7→ g ·x,
satisfying the properties

(gh) · x = g · (h · x); 1 · x = x

for all g, h ∈ G and all x ∈ X. When G acts on X, one equivalently says
that X is a G-set.

As you might guess, if G acts (on the left) on X then people often
abbreviate g · x to gx. It is also useful to consider right actions. A right
action of a group G on a set X is a mapping X × G → X, written as
(x, g) 7→ x · g, satisfying the properties

x · (gh) = (x · g) · h); x · 1 = x

for all g, h ∈ G and all x ∈ X. For the sake of definiteness, all the actions
that we will consider below are left actions, but all the results proved for
left actions have counterparts for right actions.

25.2 Examples. 1. The dihedral group Dn acts on the set of vertices of a
regular n-gon. It also acts on the set of edges of the regular n-gon.
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2. Any matrix group G of n × n matrices over a field F acts on the
vector space V = Fn by matrix multiplication; more precisely, if A ∈ G is
a matrix in the group G and x is a (column) vector in Fn then the matrix
product Ax ∈ Fn gives the action of A on x.

3. In particular, the orthogonal group O(2) of 2× 2 orthogonal matrices
acts on the vector space V = R2 of points in the Euclidean plane. Given
a point x ∈ R2 and a matrix A ∈ O(2), the action of A on x is given by
Ax ∈ R2.

Usually we think of a given G-set X as a set of “points” so that we can
use geometric language. The action of G moves points in X to other points
in X. Starting from a given point and observing where it moves (as G acts)
determines the orbit of the point.

25.3 Definition (Orbit and stabilizer). If G is a group acting on a set X,
the orbit of a point x ∈ X is the set Ox = {gx | g ∈ G}. Note that Ox ⊂ X.
The stabilizer of the point x is the subgroup Gx = {g ∈ G | gx = x}.

25.4 Lemma. For any G-set X, the stabilizer Gx of a point x ∈ X is always
a subgroup of G.

The proof is an easy exercise for the reader. Note that we do not claim
that Gx is a normal subgroup. In fact, it is not always normal.

25.5 Proposition. Let G be a group acting on a set X. Consider the
relation ∼ on X defined by x ∼ y if and only if there exists some g ∈ G
such that y = gx. Then ∼ is an equivalence relation on X. The equivalence
classes for ∼ are precisely the orbits. Thus the action of G partitions X into
a disjoint union of its distinct orbits.

Again, the proof is an easy exercise.

The following result could be called the fundamental theorem of group
actions.

25.6 Theorem (The orbit-stabilizer theorem). Let G be a group acting on
a set X. Let x ∈ X. Then |Ox| = [G : Gx]. In words: the cardinality of the
orbit of x equals the index of the stabilizer of x.

Proof. We need to find a bijection between Ox and G/Gx = the set of left
cosets of Gx in G. Given a point g · x ∈ Ox, where g ∈ G, send it to the left
coset gGx. This rule defines a map f : Ox → G/Gx.
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The map f is well-defined since if g · x = h · x for g, h ∈ G then by
left multiplication by h−1 we get (h−1g) · x = x, so h−1g ∈ Gx and thus
gGx = hGx. The map f is injective since if gGx = hGx then h−1g ∈ Gx so
(h−1g) · x = x, so g · x = h · x. The map f is surjective because any left
coset gGx is the image of the point g · x in the orbit of x.

Thus, f is a bijective function from Ox to the set G/Gx of left cosets
of Gx. The index [G : Gx] is by definition the number of left cosets, so the
proof is complete.

Although the theorem holds generally, for any group (finite or infinite)
acting on any set (finite or infinite), it is most useful when G is finite, in
which case [G : Gx] = |G|/|Gx| by Lagrange’s theorem. This gives a nice
corollary of the orbit-stabilizer theorem.

25.7 Corollary. Suppose that G is a finite group acting on a set X. Then
for any point x ∈ X we have |G| = |Gx| · |Ox|.

Proof. Lagrange’s theorem says that [G : Gx] = |G|/|Gx|. The orbit-
stabilizer theorem says that [G : Gx] = |Ox|, so |Ox| = |G|/|Gx| and the
result follows.

In case the G-set X is finite we have the following result, which can be
used to count the number of points in the set X.

25.8 Corollary. Let X be a finite G-set. Let Ox1 , . . . , Oxk
be the distinct

orbits. Then |X| =
∑k

i=1 [G : Gxi ].

Proof. Since the action of G partitions X into disjoint orbits, we can write
X as the union of its distinct orbits:

X =
⋃k

i=1 Oxi = Ox1 ⊔Ox2 ⊔ · · · ⊔Oxn .

Since the orbits listed are non-overlapping (i.e., pairwise disjoint) we have

|X| =
k∑

i=1

|Oxi | =
k∑

i=1

[G : Gxi ]

where the last equality on the line above is justified by Theorem 25.6. This
completes the proof.

25.9 Remark. The set {x1, . . . , xk} in the preceding result is called a com-
plete set of orbit representatives. To obtain such a set, one chooses exactly
one element from each distinct orbit.
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Here is one more piece of terminology that is often used in the theory of
group actions.

25.10 Definition. Let X be a G-set. We say that the action of G is
transitive, or that G acts transitively, if there is only one orbit. This means
that we can get from any point x ∈ X to any other point y ∈ X by acting
by a suitable group element.

25.11 Example. The action of Dn on the set of vertices (or the set of edges)
of a regular n-gon is transitive.

Exercises

25.1. Let X be a G-set. Prove Lemma 25.4, that the stabilizer Gx of any point
x ∈ X is a subgroup of G.

25.2. Prove Proposition 25.5.

25.3. Let D4 act on the set of vertices of a square by its natural action.

(a) Is the action transitive?

(b) Compute the stabilizer of a vertex.

25.4. Let S4 act on the set {1, 2, 3, 4} by α · j = α(j), for each j ∈ {1, 2, 3, 4}.
(a) Is the action transitive?

(b) Compute the stabilizer of 4. What group is it isomorphic to?

25.5. Let Sn act on the set n = {1, . . . , n} by α · j = α(j), for each j ∈ n.

(a) Is the action transitive?

(b) Compute the stabilizer of n. What group is it isomorphic to?

25.6. Is the action of GL2(R) on R2 given by A · X = AX (ordinary matrix
multiplication) transitive? Justify your answer.

25.7. Let X = {1, 2, 3}. Consider the action of the alternating group A3 =
{(1), (1, 2, 3), (3, 2, 1)} on X defined by α · j = α(j).

(a) How many orbits are there?

(b) Describe the orbits completely.

(c) Compute the stabilizer of 3.

25.8. Let X be the set of line segments connecting any two vertices of the square,
i.e., the edges and the diagonals. The group D4 acts on the set X in a
natural way: if L is a line segment connecting vertices i and j and g ∈ D4

then g · L is the line segment connecting vertices g · i and g · j.
(a) Describe the orbits completely. (You may wish to number the vertices

of the square.) How many orbits are there?

(b) Compute the stabilizer of one of the diagonals.

(c) Compute the stabilizer of one of the edges.
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26 Applications of group actions

We now consider a few examples of the theory of group actions. As we will
see, group actions are useful to count the size of various sets; thus group
actions are a useful tool in combinatorics.1

26.1 Example. The rotation group SO2(R) acts on the set R2 by ordinary
matrix multiplication: A · x = Ax for any A ∈ SO2(R) and any x ∈ R2

(considered as a column vector). The orbit of any point (a, b) ∈ R2 is a
circle of radius

√
a2 + b2.

26.2 Example. Consider the symmetry group G = Dn of a regular n-gon
in the plane. Let v be a given vertex of the n-gon. Clearly Dn has n different
rotations, and the rotation subgroup ⟨r⟩ generated by the basic rotation r
acts transitively on the set X of all n vertices. Of all the rotations, only the
identity fixes v. There is just one reflection that fixes v, namely the reflection
across the (unique) line of symmetry of the figure passing through the vertex
v. This proves that the stabilizer Gv of the point v has order 2, since Gv

consists of just the identity and the indicated reflection. Hence, by Corollary
25.7 we conclude that |Dn| = |Ov|·|Gv| = n·2 = 2n. Group actions provide a
tool to prove rigorously that |Dn| = 2n, something we found difficult earlier
because we lacked the appropriate theory and terminology.

26.3 Example. Let G be the group of proper symmetries of a cube. (Recall
that proper symmetries are rotations.) We are going to use Corollary 25.7 to
count the number of elements of G. Clearly G acts on the set of 8 vertices
of the cube. The action is transitive since you can get from any chosen
vertex to any other, by an appropriate sequence of rotations. Let us fix a
chosen vertex, call it v. Then |Ov| = 8. Moreover, the only rotations fixing
v are the three rotations whose axis lies along the diagonal line segment
connecting v to its opposite vertex. (It helps to hold an actual cube in your
hands to see this.) So |Gv| = 3. Thus by Corollary 25.7 we conclude that
|G| = 8 · 3 = 24. So the octahedral group has 24 elements. (Recall that the
symmetry group of the cube and the octahedron are the same group, since
the cube and octahedron are dual polyhedra.)

By similar methods you should be able to count the number of proper
symmetries of a tetrahedron (12) and the number of proper symmetries of
a dodecahedron or its dual, an icosahedron (60). Without the aid of the
orbit =stabilizer theorem, counting the size of these groups would be rather
daunting

1Combinatorics, roughly speaking, is the science of counting.
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26.4 Example. Consider the group Sn acting on the set n = {1, . . . , n} in
the natural way: α · j = α(j). This action is transitive because one can get
from any i to any j by a suitable permutation. So if we fix a chosen number
i then Oi = {1, . . . , n}. The number of permutations that fix i is |Sn−1|,
since we are free to permute the other n − 1 positions arbitrarily. Thus by
Corollary 25.7 we conclude that |Sn| = n|Sn−1|. Since |S1| = 1, we conclude
by a simple induction on n that |Sn| = n! for any positive integer n. This
gives a new proof (via the orbit-stabilizer theorem) that |Sn| = n!.

26.5 Definition. (Permutation Representation) Let X be a G-set. Given
g ∈ G, consider the map φg : X → X given by the rule x 7→ g · x. In
other words, φg(x) = g · x. Then the map φg is a bijection (exercise), so
φg is a permutation of the set X. In other words, φg ∈ SX , the group of
permutations of X. The rule φ(g) = φg for each g ∈ G defines a function φ
fromG to SX . This map φ : G → SX is called the permutation representation
of the given G-set X.

26.6 Lemma. The permutation representation φ : G → SX is a group ho-
momorphism.

Proof. We need to check that φ(gh) = φ(g)φ(h). In other words, we must
check that φgh = φg◦φh. We can verify this equality of functions by verifying
that the functions on the two sides of the equality act the same on every
possible input. So consider any x ∈ X. Then by definition, we have

φgh(x) = (gh) · x, (φg ◦ φh)(x) = φg(φh(x)) = φg(h · x) = g · (h · x).

These are the same by the definition of group actions.

The permutation representation provides a way to model abstract group
elements g ∈ G by permutations φg of X, in such a way that the group
multiplication is reproduced in the permutations.

Every group action gives rise to a permutation representation in this way.
We now apply this observation to prove the following important result.

26.7 Theorem (Cayley’s theorem). Every group is isomorphic to a group
of permutations on some set X. In particular, every finite group G is iso-
morphic to a subgroup of Sn where n = |G|.

Proof. Consider the action of G on G itself by left multiplication: g ·x = gx
for any g, x ∈ G. Here we are taking the set X to be G itself. We use the
permutation representation of Definition 26.5. By Lemma 26.6, we know
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that φ : G → SG is a group homomorphism. The kernel of φ is trivial, since
φ(g) = idG implies that φg = idG, which in turn implies that gx = x for all
x ∈ G. This forces g = 1.

Thus we have an injective homomorphism φ : G → SG. This homomor-
phism induces an isomorphism of G onto its image, which is a subgroup of
SG. In other words, we have produced an isomorphism from G to a group
of permutations, as was desired.

To get the last statement, in case G is finite, just number the elements
of G from 1 to n. Then permutations of G can be regarded as permutations
of the set n = {1, . . . , n}; i.e., SG ∼= Sn where n = |G|.

In the proof of Cayley’s theorem above, we considered the action of
G on itself by left multiplication. Another way that a group G can act on
itself is by conjugation. Analysis of this action leads to important structural
information about the group.

26.8 Definition. Given g, x ∈ G define g · x = gxg−1. This action of G on
itself is called conjugation. The element gxg−1 is called a conjugate of x.

The orbits for the conjugation action are called conjugacy classes, and
G is the disjoint union is its distinct conjugacy classes. If two elements of
G lie in the same conjugacy class, they are said to be conjugate in G. We
write C(x) for the conjugacy class of x; i.e., C(x) = {gxg−1 : g ∈ G}.

26.9 Definition. Given an element x ∈ G, its stabilizer is the subgroup Gx

given by
{g ∈ G | gxg−1 = x} = {g ∈ G | gx = xg}.

This subgroup is known as the centralizer of x, denoted by ZG(x).

In words, the centralizer of x is the set of all g ∈ G which commute with
the element x. In this context, the orbit-stabilizer theorem (Theorem 25.6)
says that

|C(x)| = [G : ZG(x)]

for any x ∈ G. (Because, C(x) = Ox and ZG(x) = Gx in the earlier
notation.)

Notice that the center Z(G) of the group G is contained in every central-
izer: Z(G) ⊂ ZG(x), for any x ∈ G. In fact, Z(G) is equal to the intersection
of all the centralizers: Z(G) =

⋂
x∈G ZG(x).
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26.10 Definition. For any subset S of G, the centralizer of S by ZG(S) =⋂
x∈S ZG(x). Then ZG(S) = {g ∈ G | gx = xg,∀ x ∈ S}. In words, the

centralizer of a subset S is the set of all elements of G commuting with all
elements of S.

In this notation, the center Z(G) is equal to the centralizer of G; i.e.,
Z(G) = ZG(G). This is clear from the definitions.

Let me point out that if z is an element of the center Z(G) then the
conjugacy class of z (the orbit) is just the singleton set {z} (since z commutes
with all elements, so gzg−1 = z for any g) and ZG(z) = G.

These notions lead us to the following important theorem, which gives
new information about finite groups.

26.11 Theorem (The class equation). Let G be a finite group, Z(G) the
center of G. Let x1, . . . , xt be a complete set of representatives for the
conjugacy classes that are disjoint from Z(G). Then

|G| = |Z(G)|+
t∑

j=1

[G : ZG(xj)].

Proof. This is a restatement of Corollary 25.8. Label the elements of Z(G)
by z1, z2, . . . , zs. Then z1, . . . , zs, x1, . . . , xt is a complete set of representa-
tives of the conjugacy classes, so by Corollary 25.8 we have

|G| =
s∑

i=1

[G : ZG(zi)] +
t∑

j=1

[G : ZG(xj)].

But each [G : ZG(zi)] in the first sum is equal to 1 since ZG(zi) = G by
the remarks above, so the first sum is equal to s, the number of elements in
Z(G), and the result is proved.

26.12 Definition. Let p be a prime. A p-group is a group in which every
element is of prime power order pr, for some positive integer r.

Note that any group of order pr for a positive integer r must be a p-
group, by Lagrange’s theorem. The study of p-groups is quite important
for understanding finite groups. It turns out that p-groups are the most
difficult class of finite groups to understand, partly because there are so
many of them. For instance, it is known that there are 267 different groups
of order 64 = 26, up to isomorphism. We will have more to say about
p-groups later.
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Here are two immediate applications of the class equation, each of which
is a result about p-groups.

26.13 Corollary. Let p be a prime number.

(a) Any group of order pr (r ≥ 1) must have at least p elements in its
center.

(b) All groups of order p2 are abelian.

Proof. (a) By the class equation, pr = |Z(G)| +
∑

[G : ZG(xj)]. But each
ZG(xj) is a proper subgroup of G since otherwise xj would be in the center.
So, by Lagrange’s Theorem, the order of ZG(xj) must be a proper divisor
of pr. But that means the order is of the form pm for some m < r and so
each [G : ZG(xj)] is divisible by p. It follows that |Z(G)| must be divisible
by p. Part (a) is proved.

(b) If we can show that Z(G) = G then we are done, because Z(G) is
obviously abelian. So suppose not. Then there exists some x ∈ G with
z /∈ Z(G). Now ZG(x) is a subgroup of G containing Z(G). By part (a),
Z(G) must have at least p elements, so the same is true of ZG(x). By
Lagrange’s Theorem, it follows that |ZG(x)| is either p or p2. But |ZG(x)|
cannot be equal to p2 or else x would belong to the center, contrary to
our assumption on x. So |ZG(x)| must equal p. But this implies that
ZG(x) = Z(G). But x ∈ ZG(x) (x commutes with itself) so x ∈ Z(G). This
is a contradiction. The contradiction forces Z(G) = G, so G is abelian. Part
(b) is proved.

Next we consider the conjugation action on subsets of G. Recall that in
set theory the power set of a set S is the collection P(S) of all subsets of S.
Any group G acts on its power set X = P(G) by conjugation, as follows.

26.14 Definition. Given any subset S of G, and any element g ∈ G, the
conjugate gSg−1 = {gsg−1 : g ∈ G} of S by g is another subset of G. Thus
the rule g · S = gSg−1 for any g ∈ G, S ∈ P(G) defines an action of G on
the set P(G).

The orbit of a given subset S for this action is the set of all conjugates
gSg−1 of S; this set is sometimes denoted C(S). The power set P(G) of G
is the disjoint union of these conjugacy classes. The stabilizer of the subset
S is

NG(S) = {g ∈ G | gSg−1 = S} = {g ∈ G | gS = Sg},

which is called the normalizer of S in G. Note that the set equality gS = Sg
does not mean that gs = sg for each s ∈ S; rather it means that for every
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s ∈ S there is some s′ ∈ S such that gs = s′g. In this context, the orbit-
stabilizer theorem (Theorem 25.6) says that

|C(S)| = [G : NG(S)]

for any subset S of G.

Note that if H is a given subgroup of G then H ◁ G if and only if
NG(H) = G. This follows readily from the definitions.

Exercises

26.1. Compute the conjugacy classes of S3. How many elements are in the cen-
tralizer ZS3(α) if α is a 3-cycle?

26.2. Compute the conjugacy classes of S4. How many elements are in the cen-
tralizer ZS4(α) if α is a 4-cycle?

26.3. Let G be a group. Prove that:

(a) The center Z(G) is a subgroup of any centralizer ZG(x), for any x ∈ G.

(b) Z(G) =
⋂

x∈G ZG(x).

26.4. Prove that for any subset S of a group G, ZG(S) must be a subgroup of
NG(S).

26.5. Prove that if H < G then H ◁ G if and only if NG(H) = G.

26.6. (a) Prove that the map φg of 26.5 is a bijection.

(b) Verify that φ (see 26.5) is a homomorphism.

26.7. Use a permutation representation of the dihedral group D3 to find a per-
mutation group isomorphic to D3. Write out a list of the elements of the
permutation group, and explain how the isomorphism is defined.

26.8. Use a permutation representation of the cyclic group Zn to find a permuta-
tion group isomorphic to Zn. Explain how the isomorphism is defined.

26.9. If G is a group of order pr where r is a positive integer and p is a prime,
then show that every subgroup of G has order pk for some integer k ≤ r.

26.10. If G is a group of order pr where r is a positive integer and p is a prime,
then show that |Z(G)| = pk where k ≥ 1.
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27 Burnside’s Lemma

Another important application of group actions is the result commonly
known as Burnside’s lemma. This result was proved originally by Georg
Frobenius in 1887, so it is not due to Burnside. Burnside included it in
his popular 1897 book On the Theory of Groups of Finite Order. By an
accident of history, the result has become known as Burnside’s lemma.

27.1 Theorem (Burnside’s lemma). Let G be a finite group acting on a
finite set X. Then the number N of orbits is given by

N =
1

|G|
∑
g∈G

|Xg|

where Xg = {x ∈ X | g · x = x} is the set of fixed points of g.

Proof. First we prove the result in case G acts transitively. Then N = 1
and we need to show that |G| =

∑
g∈G |Xg|. Let

T = {(g, x) ∈ G×X | g · x = x}.

Fix some x ∈ X. The pair (g, x) ∈ T if and only if g ∈ Gx, so the number
of such pairs is |Gx|. Since the action is transitive, Gx is conjugate to Gy

for any y ∈ X, so |Gy| = |Gx| for all y ∈ X. So if we sum over y we get

|T | =
∑
y∈X

|Gy| =
∑
y∈X

|Gx| = |X| · |Gx| = |G|

where the final equality is by the orbit-stabilizer theorem. On the other
hand, fix some g ∈ G and count |T | another way. The pair (g, x) ∈ T for
some x ∈ X if and only if g · x = x, so the set of x ∈ X with this property
is just Xg. Summing over all g ∈ G we get

|T | =
∑
g∈G

|Xg|.

By transitivity of equality, the right hand side of each of the last two dis-
played equations are equal, which proves the theorem in the transitive case.

Now we consider the general case. Observe that G acts transitively on
each of its N orbits. Thus the formula we just proved applies to each orbit.
Also the total number of fixed points of a group element is the sum of the
number of fixed points in each orbit. Hence

N |G| =
∑
g∈G

|Xg|.
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This proves the result after dividing both sides by |G|.

This simple counting formula has many useful applications. We give just
one example here to whet the reader’s appetite.

27.2 Example. Suppose that we wish to count the number of ways to color
the vertices of a regular pentagon by red and green. There are two ways to
color each vertex, and five vertices, so the simplest answer to our question
is that there are 32 = 25 colorings.

But we are usually interested in more sophisticated counting questions.
Suppose that we are making a necklace with five red and green beads. We
do not wish to distinguish between patterns which are the same under a
symmetry of the pentagon, because such patterns produce the same neck-
lace.

To count these, let X be the set of all 32 patterns. The symmetry
group D5 of the pentagon acts on X, and we want to know how many orbits
there are. The Burnside lemma will tell us the answer, as soon as we have
computed the number of fixed points of each symmetry.

Case 1. X1 = X. Obviously each element of X is fixed by 1 ∈ D5. So
|X1| = 32.

Case 2. |Xr| = 2. The only patterns fixed by a rotation r are the ones
in which all colors are the same, either all red or all green. This holds true
for all three non-trivial rotations.

Case 3. |Xd| = 8. Recall that a basic reflection d fixes one vertex and
interchanges the other four vertices in opposite pairs. The only patterns
fixed by the basic reflection d are therefore those that have the same color
on opposite vertices. So there are two colorings for the fixed vertex, and
two each for the opposite pairs, for a total of 23 = 8 colorings left fixed by
d. The same is true of each of the other four reflections.

Now we apply the Burnside formula. The identity element of D5 produces
32 fixed points, each of the four non-trivial rotations produces 2 fixed points,
and finally each of the five reflections gives 8 fixed points, so the number of
orbits is

N =
1

10
(32 + 4 · 2 + 5 · 8) = 8.

This solves our problem. There are exactly 8 distinct colorings by two colors
of a necklace with five beads.

Chemists use Burnside’s lemma to count chemical compounds. For ex-
ample, a benzene molecule can be modeled by six carbon atoms in a regular
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hexagon in a plane. One of three radicals can be attached to each carbon
atom to form a benzene molecule. Counting the number of possible benzene
molecules is thus an exercise in Burnside’s lemma.

There is a generalization of Burnside’s lemma known as the Polya enu-
meration theorem. Applications of group theory to counting problems abound,
and we can only hint at the possibilities here.

Exercises

27.1. Determine the number of necklaces with 6 beads of two possible colors.

27.2. Determine the number of necklaces with 4 beads of three possible colors.

27.3. Determine the number of necklaces with 5 beads of three possible colors.

27.4. A benzene molecule can be modeled by six carbon atoms in a regular
hexagon in a plane. One of three radicals can be attached to each carbon
atom to form a benzene molecule. Count the number of possible benzene
molecules using Burnside’s lemma.

27.5. In how many ways can the faces of a cube be colored by three colors up to
rotational symmetry? [Hint: The answer should be 57.]
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Chapter 9

Further Topics

28 The Sylow Theorems

It is rather remarkable that three of the most important general theorems
about finite groups were proved by a high school teacher. He was Ludwig
Sylow, in Norway, and he proved his famous theorems in a ten page paper
published in 1872. If pr is the largest power of a prime p dividing the order
of G, then Sylow showed:

(i) G has at least one subgroup of order pr;

(ii) any two such subgroups are conjugate;

(iii) G has 1 + kp such subgroups, for some non-negative integer k.

All of these statements are proved using the theory of group actions. Let us
look at more precise statements of these facts. First we need some additional
terminology.

28.1 Definition. Let p be a prime divisor of the order of a finite group G.
A p-subgroup of G is any subgroup whose order is a power of p. If pr is the
highest power of p dividing the order of G, then any subgroup of order pr is
called a Sylow p-subgroup of G.

Note that any Sylow p-subgroup is also a p-subgroup, but not vice versa.

28.2 Example. Suppose |G| = 250 = 2 · 53. The prime divisors of G are
just p = 2 and p = 5. Then the 2-subgroups of G are just the subgroups of
order 2, and they are also Sylow 2-subgroups. The 5-subgroups of G are the
subgroups of order 5, 25 = 52, and 125 = 53. The subgroups of order 125
are the Sylow 5-subgroups.
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28.3 Theorem (First Sylow Theorem). Let G be a finite group and p a
prime divisor of |G|. Let pr be the highest power of p dividing |G|. Then
for every integer s satisfying 0 ≤ s ≤ r there exists a subgroup of G of order
ps. In particular, a Sylow p-subgroup of G (of order pr) must exist.

Proof. Proceed by induction on the order of G. If G has order 1 there
is nothing to prove. So assume |G| > 1 and assume inductively that the
theorem has been proved for all groups of order less than |G|. By the
inductive hypothesis: If G has a proper subgroup H such that ps divides
the order of H, then H has a subgroup of order ps, and hence so does G.

Now we apply the class equation (Theorem 26.11) for G, which states
that

|G| = |Z(G)|+
∑

[G : ZG(xj)]

where the xj range over a complete set of representatives of the conjugacy
classes of G not contained in the center Z(G). Each ZG(xj) is a proper
subgroup of G (or else xj would be in the center) so by the inductive hy-
pothesis, if ps divides the order of any ZG(xj) then G contains a subgroup
of order ps and we are done.

The remaining case is that ps does not divide the order of any ZG(xj).
Then p divides each index [G : ZG(xj)], so from the class equation we
conclude that p must divide |Z(G)|. But Z(G) is abelian, so this means (by
a standard lemma, proved in Lemma 28.4 below) that the center Z(G) has
an element a of order p. The subgroup P = ⟨a⟩ generated by a has order p,
so we are done if s = 1.

So assume that s > 1. Observe that P is a normal subgroup of G
since P is contained in the center Z(G). Hence the quotient group G/P
is defined. The order of G/P is (prm)/p = pr−1m, for some integer m, so
by the inductive hypothesis G/P has a subgroup H of order ps−1. By the
correspondence theorem this subgroup H corresponds with a subgroup H ′ of
G containing P , such that H ′/P ≃ H. Thus |H ′| = ps and we are done.

In order to complete the proof of the first Sylow theorem, we need the
following simple result, which amounts to Cauchy’s theorem (see Theorem
28.7) in the abelian case.

28.4 Lemma. Let G be a finite abelian group and let p be a prime divisor
of |G|. Then G has an element of order p.

Proof. By induction on the order of G. If |G| = 1 there is nothing to prove.
Assume that |G| > 1 and that the theorem has been proved already for all

145



abelian groups of order less than |G|. If G has no proper subgroup (other
than {1}) then G must be cyclic and the statement of the theorem is easy
to see.

The remaining case is that G has a proper subgroup H ̸= |1|. If p divides
|H| then we are done by the inductive hypothesis. So assume that p does
not divide |H|. Since G is abelian, H ◁ G. So G/H is an abelian group of
order |G|/|H|. Now p must divide |G/H| since p divides |G| but not |H|.
Moreover, |G/H| < |G|. Thus, by the inductive hypothesis, G/H has an
element aH of order p. (The elements of G/H are left cosets, by definition.)
Let b = ak where k = |H|. Then one can check that the order of b is p, since
(aH)p = H implies that ap ∈ H, so by a corollary to Lagrange’s theorem
(ap)k = 1, and thus bp = akp = 1. This completes the proof, as no smaller
positive power of b can be 1.

28.5 Theorem (Second Sylow Theorem). Let G be a finite group and p a
prime divisor of |G|. IfQ is a p-subgroup ofG and P is any Sylow p-subgroup
of G, then Q must be contained in some conjugate of P . In particular, any
two Sylow p-subgroups of G must be conjugate.

28.6 Theorem (Third Sylow Theorem). Let G be a finite group and p a
prime divisor of |G|. Write |G| = prm where m is not divisible by p. If np

is the number of Sylow p-subgroups of G, then:

(a) np ≡ 1 (mod p); and

(b) np divides m.

Proofs of the second and third Sylow theorems can be found in virtually
any text on abstract algebra, so they are not reproduced here.

Our first application of Sylow’s theorems generalizes Lemma 28.4 to
include the non-abelian case.

28.7 Theorem (Cauchy’s Theorem). Let p be a prime divisor of the order
of a finite group G. Then G must have an element of order p.

Proof. By the first Sylow theorem, G has a subgroup of order p. Any element
of that subgroup (except the identity) must have order p, by Lagrange’s
theorem.

Notice how easy the proof is! This shows the power of the Sylow the-
orems. Note carefully, however, that we needed an independent proof of
Lemma 28.4 in the abelian case, since it is used in the proof of the first
Sylow theorem.
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Recall that we have earlier defined a p-group (where p is a prime) to be
any group in which the order of every element is a power of p. It follows
(see Exercise 28.4) from Lagrange’s theorem and Cauchy’s theorem that the
order of any finite p-group must be of the form pr for some r ≥ 1.

Here is another application of Sylow’s theorems.

28.8 Proposition (the pq theorem). Let |G| = pq where p < q and p, q are
primes. If p does not divide q − 1 then G is cyclic.

Proof. Let H be a Sylow p-subgroup of G and let K be a Sylow q-subgroup
of G. By the third Sylow theorem, the number of Sylow p-subgroups has
the form 1 + kp and divides q. If this number is q then p divides q − 1, a
contradiction. Thus the number of Sylow p-subgroups must be 1, so H ◁G.

Similarly, one can show there is only one Sylow q-subgroup, so K ◁ G.
Now H ∩K = {1} by Lagrange’s theorem, so

|HK| = |H| · |K|/|H ∩K| = pq

which proves that HK = G. Hence G = H ×K is the direct product of its
two Sylow subgroups. Since direct products of abelian groups are abelian,
this shows that G is abelian. In fact, if x is a generator of the cyclic group
H and if y is any generator of the cyclic group K then x and y commute
and the order of xy is the least common multiple of p and q, which is pq, so
xy has order pq. Thus xy generates G, so G is cyclic.

The last result shows that, up to isomorphism, there is just one group
(which must be the cyclic group) of order pq, where p < q are two distinct
primes such that q ̸≡ 1 (mod p). So up to isomorphism we have just one
group of order 15, one of order 33, one of order 35, etc.

28.9 Example. We apply the Sylow theorems to classify groups of order
21. Assume that |G| = 21 = 3 · 7. Note that the pq-theorem does not apply
since 7 is congruent to 1 mod 3. Let n7 be the number of Sylow 7-subgroups
of G. By the third Sylow theorem,

n7 ≡ 1 (mod 7) and n7 | 3.

The positive divisors of 3 are 1, 3 but only 1 is congruent to 1 mod 3, so
n7 = 1. So there is just one subgroup H of order 7. By the second Sylow
theorem, H is stable under conjugation and hence normal. We have proved
that any group of order 21 must have a normal subgroup of order 7. Such
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a group is not simple, so at this point we also know that there is no simple
group of order 21.

We can be even more precise. Let n3 be the number of Sylow 3-subgroups.
Then the third Sylow theorem implies that n3 = 1 or 7. Let x ∈ G be a
generator of H. Let y ∈ G be an element of order 3; such an element
must exist by Cauchy’s theorem. Note that H = ⟨y⟩ is a Sylow 3-subgroup.
We have x7 = 1, y3 = 1, and (since H is normal) yxy−1 ∈ H. Since
H = ⟨x⟩ = {1, x, x2, . . . , x6} is cyclic, it follows that yxy−1 = xk for some
positive integer k < 7.

What are the possibilities for k? The fact that y3 = 1 provides informa-
tion on this question, as follows:

x = y3xy−3 = y2(yxy−1)y−2 = y2xky−2 = y(yxky−1)y−1

= y(yxy−1)ky−1 = y(xk)ky−1 = yxk
2
y−1.

Thus x = yxk
2
y−1 = (yxy−1)k

2
= (xk)k

2
= xk

3
. Since x has order 7, it

follows that k3 must be congruent to 1 mod 7, so k = 1, 2, or 4. We consider
these cases below. Note that G = ⟨x, y⟩ is generated by x, y by Proposition
24.9.

Case 1. If k = 1 then yxy−1 = x; i.e., xy = yx. Since x, y generate G as
noted above, this means that G must be abelian. Furthermore, this implies
that K is normal in G, so in fact G = H ×K is the direct product of H and
K. This implies that G ∼= Z7 × Z3

∼= Z21 is itself cyclic.

Case 2. If k = 2 then yxy−1 = x2; i.e., yx = x2y. The relations x7 = 1,
y3 = 1, and yx = x2y actually determine G uniquely. The existence of this
group can be checked with a little more work. It is clearly not abelian.

Case 3. If k = 2 then yxy−1 = x4. In this case y2xy−2 = yx4y−1 =
x16 = x2. Thus if we replace y by y2, which also generates K, then we are
back in the previous case.

This analysis proves that, up to isomorphism, there are just two groups
of order 21, just one of which is abelian (the cyclic group of order 21).

We finish this section by displaying a brief table of the number of groups,
up to isomorphism, of order up to 24. This can be justified by the Sylow
theorems in conjunction with other results we have proved, but the task is
not easy. You can find much more extensive tables online.
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n number n number n number

1 1 9 2 17 1
2 1 10 2 18 5
3 1 11 1 19 1
4 2 12 5 20 5
5 1 13 1 21 2
6 2 14 2 22 2
7 1 15 1 23 1
8 5 16 14 24 15

Table 9.1: The number of groups of order 1–24, up to isomorphism

Exercises

28.1. Show that the element b in the proof of 28.4 has order p.

28.2. Let p be a given prime number. Prove that if G is a finite group with just
one Sylow p-subgroup, then that subgroup must be normal.

28.3. Show that there is only one group of order 33, up to isomorphism. (In other
words, every group of order 33 is isomorphic to Z33.)

28.4. Prove that if G is a finite group in which every element has order some
power of p (where p is prime) then |G| = pr for some r ≥ 1. (Such groups
are called p-groups.)

28.5. Prove that no group of order pq, where p, q are primes, is simple. (Consider
the possibility p = q as well as p ̸= q.)

28.6. Use the Sylow theorems to prove that there is no simple group of order 30.

28.7. Use the Sylow theorems to prove that there is no simple group of order 56.

28.8. Show that any quotient of a solvable group must be solvable.

28.9. Prove that if G/Z(G) is cyclic then G must be abelian.

28.10. Show that if |G| = 2p where p is an odd prime then G must be isomorphic
to either Z2p or Dp.

28.11. Show that if |G| = 12 then either G ∼= A4 or G has a normal subgroup of
order 3. [Hint: If G does not have a normal subgroup of order 3, consider
the action of G on the set G/H by left multiplication, where H is one of the
Sylow 3-subgroups. This action induces a homomorphism from G into S4.]
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29 Simplicity of An

Our final application of the theory of group actions will be to prove the
theorem (due to Galois) that the alternating groups An are all simple, except
for A4. This is the key result that shows that the general polynomial of
degree 5 or higher is not solvable in terms of radicals.

We begin with an analysis of the conjugacy classes of the symmetric
group Sn. We need to examine Sn because Galois proved that Sn is the
symmetry group associated to a general polynomial of degree n.

29.1 Example. Let’s start by looking at the example of S5. Here is a list
of all 120 elements of S5, produced by the GAP1 software package:

gap> G := SymmetricGroup(5);

Sym( [ 1 .. 5 ] )

gap> List(G);

[ (), (1,5), (1,2,5), (1,3,5), (1,4,5), (2,5), (1,5,2), (1,2), (1,3,5,2),

(1,4,5,2), (2,3,5), (1,5,2,3), (1,2,3), (1,3)(2,5), (1,4,5,2,3), (2,4,5),

(1,5,2,4), (1,2,4), (1,3,5,2,4), (1,4)(2,5), (3,5), (1,5,3), (1,2,5,3),

(1,3), (1,4,5,3), (2,5,3), (1,5,3,2), (1,2)(3,5), (1,3,2), (1,4,5,3,2),

(2,3), (1,5)(2,3), (1,2,3,5), (1,3,2,5), (1,4,5)(2,3), (2,4,5,3),

(1,5,3,2,4), (1,2,4)(3,5), (1,3,2,4), (1,4)(2,5,3), (3,4,5), (1,5,3,4),

(1,2,5,3,4), (1,3,4), (1,4)(3,5), (2,5,3,4), (1,5,3,4,2), (1,2)(3,4,5),

(1,3,4,2), (1,4,2)(3,5), (2,3,4), (1,5)(2,3,4), (1,2,3,4,5), (1,3,4,2,5),

(1,4,2,3,5), (2,4)(3,5), (1,5,3)(2,4), (1,2,4,5,3), (1,3)(2,4),

(1,4,2,5,3), (4,5), (1,5,4), (1,2,5,4), (1,3,5,4), (1,4), (2,5,4),

(1,5,4,2), (1,2)(4,5), (1,3,5,4,2), (1,4,2), (2,3,5,4), (1,5,4,2,3),

(1,2,3)(4,5), (1,3)(2,5,4), (1,4,2,3), (2,4), (1,5)(2,4), (1,2,4,5),

(1,3,5)(2,4), (1,4,2,5), (3,5,4), (1,5,4,3), (1,2,5,4,3), (1,3)(4,5),

(1,4,3), (2,5,4,3), (1,5,4,3,2), (1,2)(3,5,4), (1,3,2)(4,5), (1,4,3,2),

(2,3)(4,5), (1,5,4)(2,3), (1,2,3,5,4), (1,3,2,5,4), (1,4)(2,3), (2,4,3),

(1,5)(2,4,3), (1,2,4,3,5), (1,3,2,4,5), (1,4,3,2,5), (3,4), (1,5)(3,4),

(1,2,5)(3,4), (1,3,4,5), (1,4,3,5), (2,5)(3,4), (1,5,2)(3,4), (1,2)(3,4),

(1,3,4,5,2), (1,4,3,5,2), (2,3,4,5), (1,5,2,3,4), (1,2,3,4), (1,3,4)(2,5),

(1,4)(2,3,5), (2,4,3,5), (1,5,2,4,3), (1,2,4,3), (1,3)(2,4,5), (1,4,3)(2,5)

]

As you can see, the list is utter chaos. How can we impose any order on this
chaos, and make sense of the list? Let’s ask GAP to compute the elements
of each conjugacy class, and see what happens:

gap> CC := ConjugacyClasses(G);

[ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3)(4,5)^G, (1,2,3,4)^G,

(1,2,3,4,5)^G ]

gap> List( CC[1] );

[ () ]

gap> List( CC[2] );

[ (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5) ]

gap> List( CC[3] );

[ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,5)(3,4), (2,4)(3,5), (2,3)(4,5),

(1,5)(3,4), (1,4)(3,5), (1,3)(4,5), (1,4)(2,5), (1,5)(2,4), (1,2)(4,5),

(1,3)(2,5), (1,2)(3,5), (1,5)(2,3) ]

gap> List( CC[4] );

[ (1,2,3), (1,2,4), (1,2,5), (1,3,2), (1,3,4), (1,3,5), (1,4,2), (1,4,3),

(1,4,5), (1,5,2), (1,5,3), (1,5,4), (2,3,4), (2,3,5), (2,4,3), (2,4,5),

(2,5,3), (2,5,4), (3,4,5), (3,5,4) ]

gap> List( CC[5] );

[ (1,2,3)(4,5), (1,2,4)(3,5), (1,2,5)(3,4), (1,3,2)(4,5), (1,3,4)(2,5),

(1,3,5)(2,4), (1,4,2)(3,5), (1,4,3)(2,5), (1,4,5)(2,3), (1,5,2)(3,4),

(1,5,3)(2,4), (1,5,4)(2,3), (1,5)(2,3,4), (1,4)(2,3,5), (1,5)(2,4,3),

(1,3)(2,4,5), (1,4)(2,5,3), (1,3)(2,5,4), (1,2)(3,4,5), (1,2)(3,5,4) ]

1The GAP Group (http://www.gap-system.org).
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gap> List( CC[6] );

[ (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2),

(2,3,4,5), (2,4,3,5), (2,4,5,3), (2,5,3,4), (2,3,5,4), (2,5,4,3),

(1,3,4,5), (1,4,3,5), (1,4,5,3), (1,5,3,4), (1,3,5,4), (1,5,4,3),

(1,4,5,2), (1,5,2,4), (1,2,4,5), (1,4,2,5), (1,5,4,2), (1,2,5,4),

(1,5,2,3), (1,3,5,2), (1,5,3,2), (1,2,5,3), (1,2,3,5), (1,3,2,5) ]

gap> List( CC[7] );

[ (1,2,3,4,5), (1,2,3,5,4), (1,2,4,3,5), (1,2,4,5,3), (1,2,5,3,4),

(1,2,5,4,3), (1,3,2,4,5), (1,3,2,5,4), (1,3,4,2,5), (1,3,4,5,2),

(1,3,5,2,4), (1,3,5,4,2), (1,4,2,3,5), (1,4,2,5,3), (1,4,3,2,5),

(1,4,3,5,2), (1,4,5,2,3), (1,4,5,3,2), (1,5,2,3,4), (1,5,2,4,3),

(1,5,3,2,4), (1,5,3,4,2), (1,5,4,2,3), (1,5,4,3,2) ]

Ah, that’s much better. Some order appears in the chaos. It seems that
conjugacy classes might be a nice way to organize the elements in a large
group. Let’s analyze the results of the above computer calculation. What
do you notice about each conjugacy class? A quick look reveals that each
class consists of all elements that have the same cycle type. Each element of
the second class is a 2-cycle, each element of the third is a product of two
2-cycles, and each element of the sixth class is a 4-cycle, and so forth.

There is obviously a nice theorem here. Let’s formulate and prove it.
First, we need the notion of a partition of n, which is an important concept
in combinatorics.

29.2 Definition. Let n be a given positive integer. A partition of n is by
definition any set {λ1, λ2, . . . , λk} of positive integers that add up to n.

By standard convention, we will write partitions as ordered k-tuples of
the form λ = (λ1, λ2, . . . , λk) where the numbers are ordered from biggest
to smallest. With this convention, the partitions of n for the first few values
of n are displayed in the table below:

n partitions of n
1 (1)
2 (2), (12)
3 (3), (2, 1), (13)
4 (4), (3, 1), (22), (2, 12), (14)
5 (5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13), (15)
6 (6), (5, 1), (4, 2), (4, 12), (32), (3, 2, 1), (3, 13), (23), (22, 12), (2, 14), (16)

In the table, we used the notational trick of writing ak in place of k repeated
values of a. Thus, for instance, (15) = (1, 1, 1, 1, 1). This useful shorthand
is commonly used by people dealing with partitions.

Let us display another table, indicating not the partitions themselves but
just counting their number. In fact, the number of partitions of a given n is
usually denoted as p(n), and the function p is called the partition function.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p()n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

An interesting (and infamous) open problem in mathematics is to find a
finite closed formula for the number p()n) of partitions of n. Nobody knows
how to do this, and it would be astonishing if someone solved it at this point.

Now that we know about partitions, we can return to the problem of
describing the conjugacy classes in the symmetric group Sn.

Let α be a permutation in Sn. We know how to write α as a product
of disjoint cycles. For convenience, let’s do this in such a way that ev-
ery number from 1 to n actually appears, by inserting 1-cycles for all the
fixed points. (Recall that fixed points are usually omitted in the notation.)
For example, if α = ( 1 2 3 4 5 6 7

1 7 2 6 5 4 3 ) then we have α = (1)(2, 7, 3)(4, 6)(5) =
(2, 7, 3)(4, 6)(1)(5). Recall that disjoint cycles commute, so we can reorder
the factors any way we like; we have here chosen to write the product of
cycles in decreasing order by cycle length. Let us adopt this ordering con-
vention: in this section we will always write the product of cycles in order
of decreasing cycle length, from longest to shortest. With this convention,
the cycle type of a permutation α ∈ Sn is a partition of n.

29.3 Definition. The cycle type of a permutation α is the partition λ =
(λ1, λ2, . . . , λk) of lengths of each cycle in the product.

For example, if α = (2, 7, 3)(4, 6)(1)(5) as above then the cycle type
of α is the partition (3, 2, 1, 1) = (3, 2, 12). For another example, if α =
(7, 3, 5)(2, 1, 4)(8, 6, 10)(9) ∈ S10 then the cycle type of α is the partition
(3, 3, 3, 1) = (33, 1).

What is the cycle type of the identity permutation in Sn? It has exactly
n fixed points, so in our convention it must be written as a product of n 1-
cycles. Thus the cycle type of the identity permutation in Sn is the partition
(1n) = (1, 1, . . . , 1).

The cycle type of any permutation in Sn is a partition of n. For every
partition of n, there exists a permutation α ∈ Sn with that cycle type.

29.4 Example. The various cycle types for permutations in S5 are just the
partitions of 5: (5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13), and (15). Notice that
there are seven partitions of 5, and in Example 29.1 we found exactly seven
conjugacy classes in S5. This observation suggests the following general
result.

29.5 Theorem. Two permutations in Sn are conjugate if and only if they
have the same cycle type. Hence, the partitions of n label the conjugacy
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classes of Sn. The number of distinct conjugacy classes is the same as the
number p()n) of partitions of n.

Proof. We only need to check the first claim, since all the other claims follow
from it immediately.

(⇒): Assume that α, β ∈ Sn are conjugate permutations. This means
that there exists some permutation γ ∈ Sn such that β = γαγ−1. Now I
claim that if

α = (i1, . . . , ir)(j1, . . . , js)(. . . )

is the disjoint cycle decomposition of α then the disjoint cycle decomposition
of β = γαγ−1 is

β = (i1γ, . . . , irγ)(j1γ, . . . , jsγ)(. . . )

and this proves that α and β have the same cycle type, as desired.

(⇐): Conversely, if α, β have the same cycle type, say

α = (i1, . . . , ir)(j1, . . . , js)(. . . )

β = (k1, . . . , kr)(m1, . . . ,ms)(. . . )

then define γ to be the permutation sending i1 → k1, . . . , ir → kr, j1 → m1,
. . . , js → ms, and so on. A calculation shows that β = γαγ−1, so α, β are
conjugate. This completes the proof.

29.6 Example. We already calculated the conjugacy classes of S5 in Ex-
ample 29.1. Counting the number of elements in each class gives us the
following tabulation for the class equation of S5:

120 = 1 + 10 + 15 + 20 + 20 + 30 + 24.

(This is just the fact that G is the union of its conjugacy classes; see 25.8.)
Note that the numbers on the right of the class equation all divide |G|. This
is no accident, because of the fundamental orbit-stabilizer theorem (see 25.6
and 26.8), which says that the size of an orbit C(x) is the same as the index
[G : ZG(x)], which divides the group order |G| by Lagrange’s theorem.

29.7 Example. Now let’s fire up GAP to compute the conjugacy class
orders in the alternating group A5:

gap> G := AlternatingGroup(5);

Alt( [ 1 .. 5 ] )

gap> CC := ConjugacyClasses(G);

[ ()^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4,5)^G, (1,2,3,5,4)^G ]

gap> Size( CC[1] ); Size( CC[2] ); Size( CC[3] ); Size( CC[4] ); Size( CC[5] );

1

15

20

12

12
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As we see, there are just five classes in A5, and their cycle types are given
by the partitions (15), (22, 1), (3, 12), (5), and (5). This is an interesting
observation, because it shows that there are two classes in A5 of the same
cycle type. (Note that Theorem 29.5, which is a theorem about symmetric
groups, fails for alternating groups.) The GAP calculation above gives us
the following for the class equation of A5:

60 = 1 + 15 + 20 + 12 + 12.

This calculation is going to be very useful in proving that A5 is a simple
group, the main goal of this section.

Before leaving this example, notice that there is only one 1 in each of
the class equations considered here. This proves that the center of S5 and
the center of A5 are trivial, since x ∈ Z(G) ⇔ ZG(x) = G ⇔ |C(x)| = 1.

We have the following general observation.

29.8 Lemma. Let N be a normal subgroup of a group G. If x ∈ N then
C(x) ⊂ N . Thus N is a union of certain conjugacy classes of G.

Proof. This follows immediately from the definitions. If N is normal then
N is closed under conjugation, so of course N contains all conjugates of any
of its elements.

We are finally ready to prove the following result, originally proved by
Galois. This is the culmination of all the information developed in this
section.

29.9 Theorem. [Galois] The alternating group A5 is a simple group.

Proof. Suppose that A5 has a proper normal subgroup N . So the order |N |
satisfies 1 < |N | < 60. Also, |N | must be a divisor of 60, by Lagrange’s
theorem, so |N | = 2, 3, 4, 5, 6, 10, 12, 15, 20, or 30. By the preceding
lemma, N is a union of conjugacy classes, so |N | is a sum of the numbers
1, 15, 20, 12, 12 because of the class equation for A5 that we computed in
Example 29.7. But of course we must include the number 1 in the sum,
because H must contain the identity element and its conjugacy class is a
singleton. This is a contradiction: no such sum equals any divisor of 60.
This contradiction proves that A5 has no proper normal subgroup, hence is
simple.
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It is easy to see that A2 and A3 are simple, since A2 is trivial and A3 is
of order 3, thus cyclic of prime order. (All cyclic groups of prime order are
simple.) See Exercise 29.2 for an outline of a proof that An is simple for all
n ≥ 6. Thus all the alternating groups are simple, except for A4.

Exercises

29.1. Find a proper normal subgroup of A4, thus proving that A4 is not a simple
group.

29.2. Let N be any proper normal subgroup of An (n ≥ 6).

(a) Show that N contains an element α ̸= 1 which has a fixed point i ∈
{1, . . . , n}.
(b) Show that N contains the subset Gi of all permutations in An which fix
i.

(c) Show that Gi is isomorphic with An−1. (So N contains an isomorphic
copy of An−1.)

(d) Show that N contains every Gi, for each 1 ≤ i ≤ n.

(e) Show that An must be simple, by showing that no N , with these prop-
erties, exists.
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30 Classification of finite abelian groups

We have now developed enough general theory to classify all the finite
abelian groups, up to isomorphism. This means that we can list all pos-
sibilities for a given order n, and prove that any abelian group of order n
must be isomorphic to one of the groups on the list.

Let p be a prime. By definition, a p-group is a group in which every
element has order a power of p. Recall that Cauchy’s theorem says that
a finite group G has an element of order p, for every prime p dividing the
order of G. It follows immediately from Cauchy’s theorem and Lagrange’s
theorem that any finite p-group must be of order pk for some k ≥ 1.

30.1 Lemma. Any finite abelian group is isomorphic to the direct product
of its Sylow subgroups.

Proof. Let G be an abelian group of order n. Since any subgroup of an
abelian group is normal, all the Sylow subgroups of G are normal. By
the fundamental theorem of arithmetic, n can be factored in the form n =
pk11 pk22 · · · pkrr where p1, p2, . . . , pr are the distinct prime factors of n. Let

Gj be the Sylow pj-subgroup of G of order p
kj
j . Each Sylow subgroup is

normal since every subgroup of an abelian group is normal. By Lagrange’s
theorem, the order of any element of Gj is a power of pj and the order of any
element of the product of the other Sylow subgroups is coprime to pj . Thus
the intersection of any Gj with the product of the other Sylow subgroups is
trivial, and it follows that G = G1 ×G2 × · · · ×Gr.

30.2 Remark. It is not hard to show that the subgroup Gj appearing in the

above proof may also be described as Gj = {x ∈ G | xqj = 1} where qj = p
kj
j .

This satisfying concrete description is often useful for computations.

The lemma reduces our task (understanding all finite abelian groups) to
the task of understanding finite abelian p-groups. For this it will be useful
to use the language of partitions.

30.3 Definition. A partition of a positive integer k is a sequence λ =
(λ1, λ2, . . . , λm) of positive integers such that λ1 ≥ λ2 ≥ · · · ≥ λm and
λ1 + · · ·+ λm = k. The number m is called the length of the partition λ.

There is just one partition of 1, namely (1). The partitions of 2 are (2)
and 1, 1). The partitions of 3 are (3), (2, 1), and (1, 1, 1). The partitions
of 4 are (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1). When writing partitions,
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people often use an exponential shorthand notation for repeated entries, in
which λt

j stands for λj repeated t times. For example, in the shorthand

notation, (4, 22, 13) = (4, 2, 2, 1, 1, 1).

It is easy to construct abelian groups of order pk, for a given fixed prime
p. Pick any partition λ = (λ1, λ2, . . . , λm) of the exponent k, and define

G(p, λ) = Zpλ1 × Zpλ2 × · · · × Zpλm .

Since G(p, λ) is a direct product of cyclic groups, it is a direct product of
abelian groups, and hence is abelian. Since λ1 + · · ·+ λm = k, the order of
G(p, λ) is pk, so G(p, λ) is an abelian group of order pk.

30.4 Example. The partitions of 5 are (5), (4, 1), (3, 2), (3, 12), (22, 1),
(2, 13), and (15). For any prime p, we have the following abelian groups of
order p5.

λ G(p, λ)

(5) Zp5

(4, 1) Zp4 × Zp

(3, 2) Zp3 × Zp2

(3, 12) Zp3 × Zp × Zp

(22, 1) Zp2 × Zp2 × Zp

(2, 13) Zp2 × Zp × Zp × Zp

(15) Zp × Zp × Zp × Zp × Zp.

In this example, it is not difficult to verify that all the groups in the list
are pairwise non-isomorphic, because you can always find an element in
one product group of a different order than all elements of the other. (For
example, Zp5 has an element of order p5, but none of the others do, so Zp5

is not isomorphic to any of the others.)

Based on the example, one naturally expects that if λ ̸= µ are distinct
partitions of k then G(p, λ) ≇ G(p, µ). This is indeed true, but somewhat
awkward to prove at the moment, so we defer the proof until later in the
analysis.

It would be nice if the abelian p-groups we just constructed, namely the
ones of the form G(p, λ), where λ is a partition, give all the finite abelian
p-groups up to isomorphism. We will prove that this is indeed the case,
following a note by G. Navarro2 published in 2003.

The key fact we need to prove is that any abelian p-group is isomorphic to
a product of cyclic groups. The proof rests on the following pair of lemmas.

2Navarro, Gabriel: On the fundamental theorem of finite abelian groups. Amer. Math.
Monthly 110 (2003), no. 2, 153–154.
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30.5 Lemma. Suppose that G is a finite abelian p-group, where p is a
prime. If G has a unique subgroup of order p then G is cyclic.

Proof. By induction on |G|. Consider the homomorphism f : G → G given
by f(x) = xp. This is a homomorphism because G is abelian. Let K be the
kernel of f . By hypothesis, K is the only subgroup of G of order p. Then
G/K ∼= f(G). If K = G then G is cyclic and we are done. Otherwise, K is
a proper subgroup of G and hence f(G) is not the trivial subgroup. Every
subgroup of f(G) is a subgroup of G, so f(G) has a unique subgroup of
order p, and thus is cyclic by the inductive hypothesis. So G/K is cyclic.
Then there is some y ∈ G such that yK generates G/K. Clearly y ̸= 1
as yK has order |G|/p in G/K. Let H = ⟨y⟩ be the cyclic subgroup of G
generated by y. Then HK = G. (Otherwise the order of HK/K would
be strictly less than |Gp, in violation of the fact that yK has order |G|/p.)
Now by Cauchy’s theorem H has a subgroup of order p, which must be K.
Hence K ⊂ H and G = HK = H = ⟨y⟩, so G is cyclic.

30.6 Lemma. If G is a finite abelian p-group, let C be a cyclic subgroup
of maximal order. Then G = C ×B for some subgroup B.

Proof. Again we use induction on |G|. If G is cyclic then G = C × {1}
and we are done. Otherwise, by the previous lemma G has at least two
subgroups of order p, but C has only one. Let K be a subgroup of order p
which is not contained in C. Then C ∩K = {1}. No homomorphic image of
G has a cyclic subgroup of order larger than |C|, so CK/K ∼= C is cyclic of
maximal order in G/K. By the inductive hypothesis, G/K = CK/K×B/K
for some subgroup B of G. Since K ⊂ B, it follows that G = (CK)B = CB.
Furthermore, C ⊂ CK and B∩CK = K, so C∩B = C∩B∩CK = C∩K =
{1}. Hence G = C ×B.

30.7 Theorem (classification of abelian p-groups). Suppose that G is a
finite abelian p-group, of order pk for some k ≥ 1. Then there is some
partition λ of k such that G ∼= G(p, λ). Furthermore, G(p, λ) ≇ G(p, µ) for
λ ̸= µ.

Proof. The proof is by induction on |G|. If G is cyclic, then G ∼= Zpk and
we are finished. Otherwise, let C be a cyclic subgroup of G of maximum
possible order. Then |C| = pλ1 where λ1 < k. By Lemma 30.6, G = C ×B
with |B| < |G|. Note that B is also a p-group; in fact |B| = pk−λ1 . By
the inductive hypothesis, B is isomorphic to a product of cyclic groups of
the form G(p, (λ2, . . . , λm)), where (λ2, . . . , λm) is a partition of k − λ1.
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Thus G = C × B ∼= G(p, λ), where λ = (λ1, λ2, . . . , λm). This proves the
first claim. It also proves the second claim, since if C × B = C × B′ then
B ∼= B′.

As an easy corollary, we obtain the desired classification theorem for
finite abelian groups.

30.8 Theorem (classification of finite abelian groups). Any finite abelian
group is isomorphic to a direct product of cyclic groups. If n = pk11 · · · pkrt is
the prime power factorization of n then the number of isomorphism classes
of finite abelian groups of order n is p(k1) · · · p(kr), where p(k) is the number
of partitions of k.

Proof. Combine Lemma 30.1 and Theorem 30.7.

The function p(k) appearing in the last theorem is called the partition
function. There is no known explicit formula for p(k). We are now finished
with the classification of all finite abelian groups.

30.9 Example. Let n = 1200 = 24 · 3 · 52. Since p(4) = 5, p(1) = 1, and
p(2) = 2, it follows that there are exactly 10 = 5·1·2 different abelian groups
of order 1200, up to isomorphism. We can easily list all ten isomorphism
types of the abelian groups of order 1200. They are indexed by ordered pairs
(λ, µ) of partitions, such that λ is a partition of 4 and µ is a partition of 2
(we can omit the unique partition of 1 from our indexing), as follows:

(λ, µ) G(2, λ)×G(3, (1))×G(5, µ)

((4), (2)) Z24 × Z3 × Z52

((4), (12)) Z24 × Z3 × Z5 × Z5

((3, 1), (2)) Z23 × Z2 × Z3 × Z52

((3, 1), (12)) Z23 × Z2 × Z3 × Z5 × Z5

((22), (2)) Z22 × Z22 × Z3 × Z52

((22), (12)) Z22 × Z22 × Z3 × Z5 × Z5

((2, 12), (2)) Z22 × Z2 × Z2 × Z3 × Z52

((2, 12), (12)) Z22 × Z2 × Z2 × Z3 × Z5 × Z5

((14), (2)) Z2 × Z2 × Z2 × Z2 × Z3 × Z52

((14), (12)) Z2 × Z2 × Z2 × Z2 × Z3 × Z5 × Z5.

The orders of the individual factors in each product above are called the
elementary divisors of the group. Each isomorphism type is uniquely deter-
mined by its set of elementary divisors.
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The acute reader might be alarmed to notice that the cyclic group of or-
der 1200 appears to be missing from the above list. However, it is isomorphic
to the first group on the list, so it is not actually missing.

Because of the fact that Zmn
∼= Zm × Zn whenever m,n are relatively

prime, there are many other ways to express each of the above isomorphism
types as products of cyclic groups. With this in mind, we rewrite the above
table in a different looking form (but still isomorphic correspondingly):

(1200) Z1200

(5 | 240) Z5 × Z240

(2 | 600) Z2 × Z600

(10 | 120) Z10 × Z120

(4 | 300) Z4 × Z300

(20 | 60) Z20 × Z60

(2 | 2 | 300) Z2 × Z2 × Z300

(2 | 10 | 60) Z2 × Z10 × Z60

(2 | 2 | 2 | 150) Z2 × Z2 × Z2 × Z150

(2 | 2 | 10 | 30) Z2 × Z2 × Z2 × Z10 × Z30.

Although the second table looks very different from the first, it is merely an-
other way of describing the isomorphism types as products of cyclic groups.
In this description, the products are indexed by sequences (d1 | d2 | · · · ) of
divisors of the group order such that each di divides the next di+1 and such
that the product of all the di is equal to the group order. Such sequences are
called invariant factors of the group. There is an algorithm for going going
back and forth between elementary divisors and invariant factors, which we
leave to the reader.

It would be nice to go on to solve the problem of classifying non-abelian
finite groups up to isomorphism. Alas, it is unknown how to do this in
general. This remains an unsolved problem in group theory.

Exercises

30.1. Prove that Zm × Zn
∼= Zmn if m,n are relatively prime.

30.2. Use the result of the previous exercise to express Z330 as an isomorphic
product of simple groups. What are the composition factors of Z330?

30.3. Show that the composition factors of any abelian p-group are all isomorphic
to Zp.

30.4. List all the partitions of 6 and 7. What is p(6) and p(7)?
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30.5. List all abelian groups of order 30, up to isomorphism, giving both the
elementary divisors and invariant factors for each type.

30.6. List all abelian groups of order 48, up to isomorphism, giving both the
elementary divisors and invariant factors for each type.

30.7. List all abelian groups of order 64, up to isomorphism, giving both the
elementary divisors and invariant factors for each type.

30.8. List all abelian groups of order 100, up to isomorphism, giving both the
elementary divisors and invariant factors for each type.

30.9. Prove that the number of isomorphism types of abelian groups of order 128
is 15.

30.10. Prove that there are 35 different abelian groups of order 2592 = 25 · 34 up
to isomorphism.

30.11. Show that the generating function for the number p(n) of partitions of n is

∞∑
n=0

p(n)xn =

∞∏
k=1

(
1

1− xk

)
.

This means that you can compute p(n) by taking the coefficient of xn in the
product of the various geometric series expansions on the right hand side.
This formula is due to Euler.
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31 Presentations of groups

The idea of presenting a group by generators and relations is known as
combinatorial group theory. The idea originated in a paper by Walther von
Dyck in 1882; it is useful in algebraic topology and geometry. We give a
brief crash course in the main ideas.

31.1 Definition. The free group on generators a, b, c, . . . is the group con-
sisting of all possible strings (e.g. aaba−1bbbac−1) of the generators and
their inverses, taken in any order, with the understanding that whenever a
symbol x and its inverse x−1 appear next to one another, we are allowed to
reduce the string by omitting the pair (i.e. we cancel xx−1 and x−1x when-
ever they appear). A string is reduced if no such cancellations are possible,
and the elements of the free group are precisely the reduced strings of any
length. Obviously, any free group is infinite, since there is no limit to the
length of the strings.

By definition, there are no other relations between the generators in a free
group, besides the relation which says we can cancel an element multiplied
by its inverse. In a free group, as in any group, we allow ourselves to write
an as a shorthand for the string aaa · · · a (n times repeated) and similarly
a−n as a shorthand for a−1a−1 · · · a−1 (repeated n times).

An important element of the free group is the empty string ϵ, which is
the only string of length zero. Given two strings s1 and s2 in a free group,
we multiply then by juxtaposition; that is, s1s2 is the string obtained by
joining the symbols of s1 with the symbols of s2 to make a new string. For
instance, if s1 = a3b2a−2bab and s2 = b−1a−2b5cb then

s1s2 = a3b2a−2bab b−1a−2b5cb

= a3b2a−2ba a−2b5cb

= a3b2a−2ba−1b5cb

remembering our rules for reducing adjacent pairs of symbols and their in-
verse. It is easy to see that the free group is a group, with ϵ serving as its
identity element. What is the inverse of a given string?

The free group on one generator a is obviously abelian, since the only
strings we can form using one symbol a are powers of a, and powers of a
surely commute with one another. It is easy to see that the free group G on
a single generator a is isomorphic with the infinite (additive) cyclic group Z;
the isomorphism is given by the map G → Z defined by the rule am → m.
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A free group with more than one generator is never abelian, since the
equality ab = ba for two generators a, b would be a non-trivial relation (and
thus the group would no longer be “free”).

31.2 Theorem. Any group is isomorphic to a quotient of some free group.

Proof. (Sketch) Here’s a sketch of the procedure to prove this fact, and it
gives a method of constructing the group as a quotient of a free group. Given
a group G, let S = {a, b, c, . . . } be a set of elements of G which generates G
(so that G = ⟨S⟩). At worst, we could take S = G but usually we can pick
a much smaller generating set, as we have seen in numerous examples. Let
F be the free group on the generators in the set S, and in the free group
S let N be the subgroup consisting of all strings in the generators which
evaluate to the identity in the given group G. Then one can prove that N
is a normal subgroup of F , and moreover that F/N ≃ G. This is done by
the first isomorphism theorem, using a natural homomorphism from F onto
G.

31.3 Remark. In practice, one would like to choose the generating set
S to be as small as possible. Also, it is customary to specify the normal
subgroup N by finding a (smallest possible, or at least nice in some way)
set of generators for it. These generators of N are known as the defining
relations of G.

31.4 Example. An example of a group given by generators and relations
is the dihedral group Dn, which is given by two generators r, d subject to
the defining relations

rn = 1; d2 = 1; rdr = d.

It is easy to see that these relations hold in Dn, but rather harder to show
that any other relations between these generators will be consequences of
these relations. To do this, you need to prove that the corresponding ele-
ments

rn; d2; rdrd

generate a normal subgroup N of the free group F on the generators r, h
such that F/N ≃ Dn. This can be shown with a bit of work.

31.5 Example. The symmetric group Sn is generated by transpositions,
we have proved a long time ago. In fact, it is generated by the the adjacent
interchanges; these are the special transpositions

t1 = (1, 2), t2 = (2, 3), . . . , tn−1 = (n− 1, n).
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It is not hard to verify that these n− 1 generators satisfy the relations

t2i = 1; titj = tjti (if |i− j| > 1);

titi+1ti = ti+1titi+1

for all values of the indices i, j for which the equations make sense in Sn.
The last two relations are known as the braid relations.

It is harder to verify, yet true, that these relations actually define Sn, in
the sense that every other relation between generators is a consequence of
these. In other words, the corresponding elements

t2i ; titjtitj (if |i− j| > 1); titi+1titi+1titi+1

obtained from the relations (by writing each relation in the form R = 1)
generates a normal subgroup N such that Sn ≃ F/N where F is the free
group on the symbols t1, . . . , tn−1.

31.6 Definition. In general, if G is a group given by generators g1, g2, . . .
with defining relations R1, R2, . . . then we will write

G ≃ ⟨g1, g2, · · · | R1, R2, . . .⟩

to indicate this. Such a description of G (by generators and relations) is
called a presentation of G.

A presentation G = ⟨g1, g2, · · · | R1, R2, . . .⟩ describes G as F/N where
F is the free group generated by g1, g2, . . . , and N is the normal subgroup
of G generated by R1, R2, . . . . Note that if one is given a generator R for
N then R is a string in the symbols g1, g2, . . . (and their inverses) which is
identity in G; sometimes the relation R is expressed as an equation R = 1,
or any equation equivalent to it. For instance, one of the generators of the
set of relations in Dn is rdrd, and it is customary to write this as the relation
rdrd = 1 in Dn, which is equivalent to the equation rdr = d (since d2 = 1).

31.7 Examples. In the notation just introduced, we write out presentations
for each of the groups Cn = cyclic group of order n, Dn = the dihedral group
of symmetries of a regular n-gon, and Sn = symmetric group on n letters:

Cn = ⟨x | xn = 1⟩
Dn = ⟨r, d | rn = 1, d2 = 1, rdr = d⟩

Sn = ⟨t1, . . . , tn−1 | t2i = 1, titj = tjti (if |i− j| > 1), titi+1ti = ti+1titi+1⟩.
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The presentation of Sn is called the Coxeter presentation. There is an elab-
orate theory of Coxeter groups, which are groups defined by generators and
relations subject to certain conditions. Coxeter groups have applications to
Lie groups.

Although it is satisfying to describe a group by means of generators
and relations, there are some issues with this approach. Here are three
fundamental problems formulated by Max Dehn in 1911. These problems
are important for presentation theory as well as applications. Let G be a
group defined by means of a given presentation. Dehn’s problems are:

I. (Word problem) For an arbitrary word w in the generators, decide in
a finite number of steps whether or not w = 1 in G.

II. (Conjugacy problem) For two arbitrary words w1, w2 in the genera-
tors, decide in a finite number of steps whether or not w1 and w2 are
conjugate in G.

III. (Isomorphism problem) For an arbitrary group H defined by means
of another presentation, decide in a finite number of steps whether or
not G ∼= H.

Unfortunately, it has been proven that all three problems are in general
undecidable in the sense of mathematical logic. Roughly speaking, a problem
is undecidable if it is not possible to design a Turing machine to solve it. It
is generally understood that algorithms are equivalent to Turing machines,
so the undecidability of these problems effectively means that there is no
general algorithm to solve them.

That may sound rather discouraging, but in fact there are many classes of
presentations for which all three problems have been solved, so the situation
is not so dire as it may seem. Much more is known about combinatorial
group theory; the book Combinatorial Group Theory by Magnus, Karass,
and Solitar is a classic reference.

Exercises

31.1. Find a presentation by generators and relations of the Klein four group K4,
using two generators.

31.2. Show that the group given by the presentation ⟨a, b | a5 = b2 = 1, ba = a2b⟩
is isomorphic to Z2.

31.3. Show that the group G = ⟨x, y | x2 = yn = 1, xyx = y−1⟩ is isomorphic to
Dn.

31.4. Find a minimal presentation of the group Z2 × Z3.
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31.5. What is the minimum number of generators needed to generate the group
G = Z2 × Z2 × Z2? Find a presentation of this group.

31.6. Show that the quaternion group Q = {±1,±i,±j,±k}, in which i2 = j2 =
k2 = −1, (−1)2 = 1, and the symbols i, j, k multiply like standard unit
vectors according to usual cross-product rules in R3, is presented by ⟨a, b |
a2 = b2 = (ab)2⟩.

31.7. Artin’s braid group Bn can be defined by the presentation

⟨t1, . . . , tn−1 | titj = tjti (if |i− j| > 1) ; titi+1ti = ti+1titi+1⟩.

Show that Sn is a homomorphic image of Bn and compute the kernel.

31.8. (a) Show that the symmetric group Sn is generated by the n-cycle c =
(1, 2, 3, 4, . . . , n) and the transposition t = (1, 2).

(b) (May be difficult) Find a set of defining relations on these genera-
tors that gives a presentation of Sn by these two generators and the
relations you found.

31.9. (May be difficult) Find a presentation by generators and relations for the
alternating group An. [Hint: You may wish to start with the fact that An

is generated by 3-cycles.]
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special linear group, 66, 76
special orthogonal group, 66
special unitary group, 76
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symmetric group, 23
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trivial group, 82
two-line notation, 16
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undecidable, 165
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unit, 61
unitary group, 76
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vector space, 82

well-ordering principle, 48
word problem, 165
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Z(G), 91, 94
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